Model

Demand Shocks with Dispersed Information

Guido Lorenzoni (MIT)

Class notes, 06 March 2007

Nominal rigidities: imperfect information

- How to model demand shocks in a baseline environment with imperfect info?
- Need consumer's decisions to be richer:
 - Forward looking
 - No fully revealing prices
- Embed in something closer to neo-keynesian benchmark
- Add shocks to expected productivity

Ingredients

Model of "fundamental" and "sentiment" shocks

- Fundamental information is dispersed across the economy
- Agents know "potential output" in their own sector, but not the aggregate
- Demand shocks: shifts in average beliefs about aggregate potential output

Households: consumer/producer on [0,1].

Preferences:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}\left(\log C_{it} - \frac{1}{1+\eta}N_{it}^{1+\eta}\right)$$

$$C_{it} = \left(\int_{J_{it}}C_{ijt}^{\frac{\sigma-1}{\sigma}}dj\right)^{\frac{\sigma}{\sigma-1}}$$

random consumption basket:
$$J_{it} \subset [0,1]$$

Technology:

$$Y_{it} = A_{it}N_{it}$$

Individual productivity (private signal) is

$$a_{it} = logA_{it} = a_{t-1} + \theta_{it}$$

aggregate component and idiosyncratic component

$$\theta_{it} = \theta_t + \varepsilon_{it}$$

Aggregate productivity is

$$a_t = a_{t-1} + \theta_t$$

Shocks (continued)

Public signal about aggregate innovation

$$s_t = \theta_t + e_t$$

- news
- aggregate statistics
- stock market

Model

 θ_t = fundamental shock

 $e_t = \text{sentiment shock}$

Agents have nominal balances B_{it-1} with CB (*cashless economy*)

- Before observing current shocks: state contingent contracts
- CB sets nominal interest rate on balances R_t
- Producer set price P_{it}
- Consumer observes prices in consumption basket P_{jt} for $j \in J_{it}$
- Consumer buys goods
- All shocks publicly revealed, state contingent contracts settled

Wrapping up

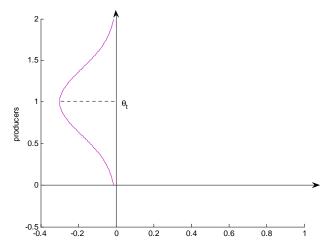
$$\begin{split} B_{it} &= R_t \left(B_{it-1} + \left(1 + \tau \right) P_{it} \, Y_{it} - \overline{P}_{it} \, C_{it} + Z_{it} \left(h_t \right) - T_t \right) \\ &- \int q_t \left(\tilde{h}_t \right) Z_{it} \left(\tilde{h}_t \right) d\tilde{h}_t. \end{split}$$

• \overline{P}_{it} price index for goods in J_{it}

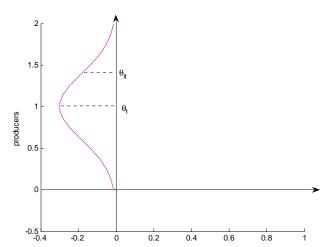
Linear equilibrium

Model

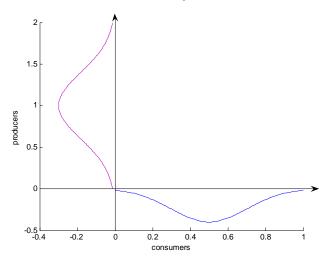
- Z state contingent contracts
- subsidy τ to correct for monopolistic distortion
- T_t lump sum tax to finance subsidy



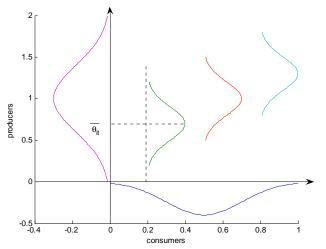
Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month_YYYY].



Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



Random consumption baskets



Random consumption baskets (continued)

$$\overline{\boldsymbol{\theta}}_{it} = \left\{ \boldsymbol{\theta}_{jt} : j \in \boldsymbol{J}_{it} \right\}$$

additional idiosyncratic shock: sampling shock v_{it}

$$\overline{\theta}_{\it it} = \theta_{\it t} + v_{\it it}$$

Monetary policy rule

Interest rate rule

$$r_t = r + \xi \left(p_{t-1} - p_{t-1}^* \right)$$

Price target

$$p_t^* = \phi_\theta \theta_t + \phi_s s_t$$

- no superior information
- only trying to keep nominal prices stable
- $\xi > 1$ 'active' rule
- all lowercase = logs

Linear equilibrium

Individual prices and consumption

$$\rho_{it} = \phi_0 + \phi_\theta \theta_{it} + \phi_s s_t
c_{it} = \psi_0 + a_{t-1} + \psi_\varepsilon \theta_{it} + \psi_v \overline{\theta}_{it} + \psi_s s_t$$

- in equilibrium $p_t = p_t^*$
- interest rate constant

Proposition

Linear equilibrium exists under given policy rule, determinate if $\xi > 1$

Potential output

$$c_t^* = \psi_0^* + a_{t-1} + \theta_t$$

- aggregate output under first best allocation
- = aggregate output under full information (with right τ)
- = linear equilibrium iff

$$\psi_{\theta} = 1 \quad \psi_{s} = 0$$

Mechanics and remark 1

- full insurance + normal sampling shocks + iso-elastic preferences
 - ⇒ closed form linear equilibrium
- e.g.: the price index for consumer i is

$$\overline{P}_{it} = V_{\rho} \exp \{ \rho_t + \phi_{\theta} v_i \}$$

where

$$V_p = \exp\{\frac{1-\sigma}{2}\phi_\theta^2 \hat{\sigma}_\varepsilon^2\}$$

Mechanics and remark 2

- consumers observe whole distribution P_{jt} for $j \in J_{it}$
- a sufficient statistic is $\overline{\theta}_{\it it}$
- this is like having two noisy signals of θ_t :

$$\frac{\theta_{it} = \theta_t + \varepsilon_{it}}{\overline{\theta}_{it} = \theta_t + V_{it}}$$

Mechanics and remark 2

- consumers observe whole distribution P_{jt} for j ∈ J_{it}
- a sufficient statistic is $\overline{\theta}_{it}$
- this is like having two noisy signals of θ_t :

$$\frac{\theta_{it} = \theta_t + \varepsilon_{it}}{\overline{\theta}_{it} = \theta_t + V_{it}}$$

→ information structure is independent of monetary policy

Pricing

Optimality condition

$$p_{it} = \eta \left(\mathbb{E}'_{it} \left[c_t + \sigma \left(p_t - p_{it} \right) \right] - a_{it} \right) + \left(\mathbb{E}'_{it} \left[\overline{p}_{it} + c_{it} \right] - a_{it} \right) + \eta \left(\psi_v + \sigma \phi_\theta \right) \mathbb{E}'_{it} \left[v_{jt} \right]$$

- \mathbb{E}_{it}^{I} expectation at pricing stage
- high demand relative to prod → high price
- high consumption relative to prod → high price

Consumption

Euler equation

$$c_{it} = \mathbb{E}_{it}^{II} \left[\underbrace{a_{t+1}}_{\text{exp. income}} - (r - p_{t+1} + \overline{p}_{it}) \right]$$

• \mathbb{E}_{it}^{II} expectation at consumption stage

Demand shocks

Properties of monetary regime

- $E_t[p_{it+1}] = 0$
- stable price level in expectation
- equilibrium r_t constant

Simple case

$$\frac{\sigma_\epsilon}{\sigma_\theta} \to \infty$$

agents disregard their private info

$$E_t^P[.] = E[.|a_{t-1}, s_t]$$

Effects of
$$e_t$$
 and θ_t

$$\rho_t = \frac{1+\eta}{1+\sigma\eta} (E_t^P[a_t] - a_t])$$

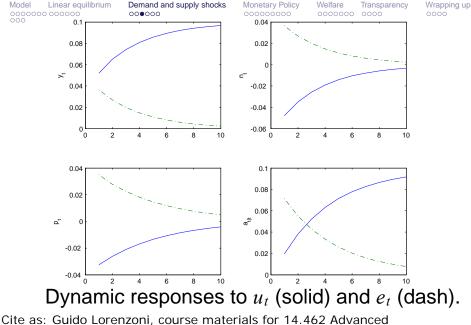
$$y_t = \lambda E_t^P[a_t] + (1 - \lambda)a_t$$

Effects of $e_t > 0$

- only temporary effects
- raise c_t , p_t and n_t

Effects of $\theta_t > 0$

- permanent effects
- raise c+
- lower p_t and n_t



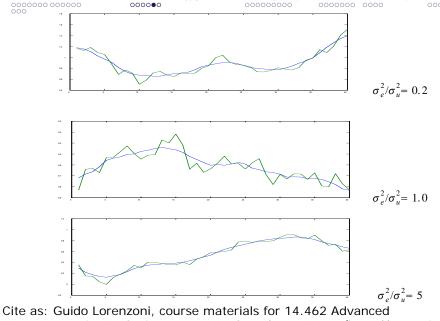
Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

What restrictions does the theory impose?

- evidence on 'signals' gives testable implications
- evidence on aggregate beliefs
- basic restrictions on joint behavior of error and actual series

$$y_t = \lambda E_t^P[a_t] + (1 - \lambda)a_t$$

fraction of variance of y_t due to demand shocks over total variance is **bounded**



Monetary Policy

Welfare

Transparency

Wrapping up

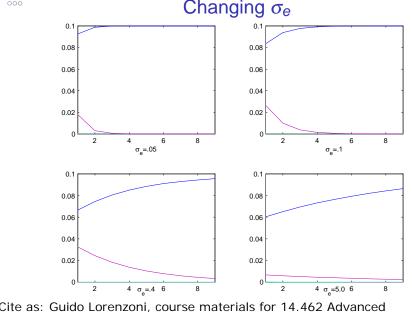
Demand and supply shocks

Model

Linear equilibrium

Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/),

Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



Demand and supply shocks

00000

Monetary Policy

Welfare

Transparency

Wrapping up

Linear equilibrium

Model

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

A richer policy rule

Interest rate rule

$$r_t = r + \xi \left(p_{t-1} - p_{t-1}^* \right)$$

Price target

$$p_t^* = \mu a_{t-1} + \phi_\theta \theta_t + \phi_s s_t$$

- use past information
- p_t aggregate price index
- note the term μa_{t-1} inertial rule

Monetary Policy (continued)

Consumption under $\mu \neq 0$

Euler equation

$$c_{it} = \mathbb{E}_{it}^{II} \begin{bmatrix} \underline{a_{t+1}} - (r_t - \underline{p_{t+1}} + \overline{p}_{it}) \\ \text{exp. income} \end{bmatrix}$$

A richer policy rule

Interest rate rule

$$r_t = r + \xi \left(p_{t-1} - p_{t-1}^* \right)$$

Price target

$$p_t^* = \mu a_{t-1} + \phi_{\theta} \theta_t + \phi_{s} s_t$$

- use past information
- p_t aggregate price index
- note the term μa_{t-1} inertial rule

Power of policy rule

Agents have different expectations about future output

...but also different expectations about real interest rate

$$\mathbb{E}_{it}^{II}[r-\mu_{\theta}\theta_{t}+\overline{p}_{it}]$$

2 crucial ingredients:

- agents forward looking
- in the future more information than now
- \rightarrow policy rule allows to 'manage expectations'

Power of policy rule (continued)

The choice of μ_{θ} feeds back into optimal prices \overline{p}_{it} It also affects response to s_t and response of relative prices An increase in μ_{θ}

- increases ψ_θ
- reduces ϕ_{θ}
- increases ϕ_s
- decreases ψ_s

Achievable linear equilibria

vector $\psi_{\theta}, \phi_{\theta}, \phi_{s}, \psi_{s}$ s.t.

$$\begin{array}{rcl} \psi_{\nu} & = & \psi_{\varepsilon}\delta_{\nu}/\delta_{\varepsilon}-\phi_{\theta} \\ (1+\sigma\eta)\,\phi_{\theta} & = & \eta\left(\left(\psi_{\theta}+\sigma\phi_{\theta}\right)\beta_{\theta}-1\right)+\left(\left(\psi_{\theta}+\phi_{\theta}\right)\beta_{\theta}/\delta_{\theta}-1\right)+ \\ & & +\eta\left(\psi_{\nu}+\sigma\phi_{\theta}\right)\gamma(1-\beta_{\theta})\,, \\ 0 & = & \eta\left(\psi_{\theta}+\sigma\phi_{\theta}\right)\beta_{s}+\left(1+\eta\right)\psi_{s}+ \\ & & +\left(\psi_{\theta}+\phi_{\theta}\right)\left(\beta_{s}-\delta_{s}\right)/\delta_{\theta}-\eta\left(\psi_{\nu}+\sigma\phi_{\theta}\right)\gamma\beta_{s}, \end{array}$$

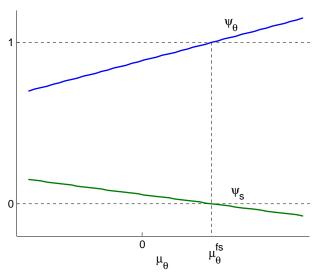
Another divine coincidence?

Proposition

There is a μ_{θ}^{fs} that achieves **full stabilization**:

$$\psi_{\theta} = 1$$
 $\psi_{s} = 0$

- here output is always equal to potential
- induce agents to respond more to private productivity



Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

More on the relation between ψ_{θ} and ϕ_{θ}

- increase response of output to fundamental
- increase response of demand to local productivity
- reduce price adjustment ($\phi_{ heta} < 0$)

Welfare

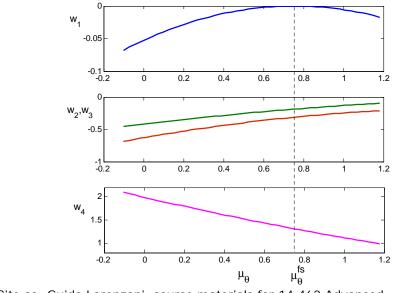
4 components:

$$\begin{aligned} &-\left(1+\eta\right)\mathbb{E}\left[\left(c_{t}-c_{t}^{*}\right)^{2}|a_{t-1}\right]-\left(1+\eta\right)\textit{Var}\left(n_{it}\right)+\\ &-\textit{Var}\left(c_{jt}+\sigma\overline{p}_{jt}|j\in\widetilde{J}_{it}\right)+\sigma\left(\sigma-1\right)\textit{Var}\left(p_{jt}|j\in J_{it}\right)\end{aligned}$$

- 1. aggregate output gap (-)
- labor supply cross sectional dispersion (-)
- 3. demand cross sectional dispersion (-)
- relative price dispersion (+)

σ	7		
η	2		
σ_{θ}^2	1	$\sigma_{\!arepsilon}^2$	1
$\sigma_{\rm e}^2$	1/3	γ	0.5

Table: Parameters for the example



Demand and supply shocks

Monetary Policy

Welfare

0000000

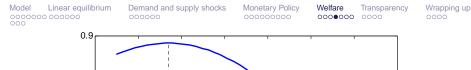
Transparency

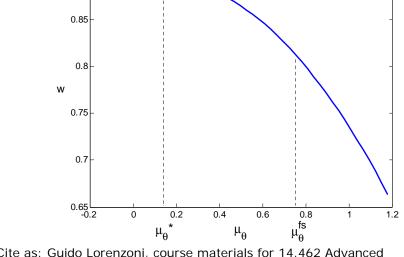
Wrapping up

Linear equilibrium

Model

Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].





Cite as: Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Optimal monetary policy

Proposition

Full stabilization is typically not optimal Some accommodation of demand shocks is optimal

- It is optimal $\mu^* < \mu^{fs}$
- It is optimal to partially accommodate $\psi_s > 0$
- Price dispersion is larger at optimal monetary policy than under full stabilization

Special case

$$\eta = 0$$

- now it is optimal $\psi_{\theta}=1$
- $\phi_{\theta} = -1$
- decreasing prices proportionally to productivity gives:
 - 1. right relative prices
 - 2. right response of consumption

Special case (continued)

$$p_{it} = \left(\mathbb{E}_{i}^{I}\left[\overline{p}_{it} + c_{it}\right] - a_{it}\right)$$

$$c_{it} = \mathbb{E}_{i}^{II}\left[a_{t+1} + p_{t+1}\right] - \overline{p}_{it}$$

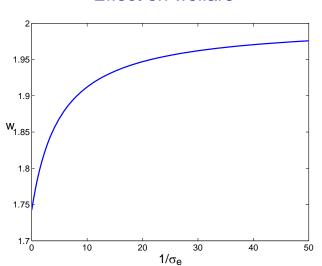
- unit intertemporal elasticity of substitution
- proportional response is optimal

Transparency

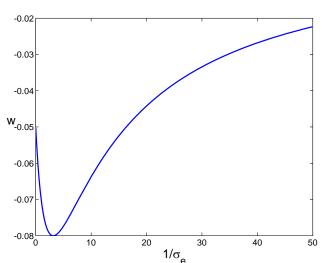
Is better public information good? (Morris and Shin (2002))

- Effect on output gap may be bad
- Total effect always good

Effect on welfare



Effect on output gap volatility



Compare with Hellwig (2005)

Lucas style model with unobserved money supply shocks

- more precision about monetary shocks is good:
 - reduce output gap
 - reduce price variance (spurious)

Here uncertainty about real shocks

- more precision is good:
 - ambiguous on output gap
 - increase price variance (good)
 - second effect dominates

Expectations' shocks and business cycles

- Business cycles driven by news (Beaudry and Portier (2006), Jaimovich and Rebelo (2006))
- Problem 1: in neoclassical setting 'demand disturbances' have hard time generating right response of hours/consumption/investment
- Euler equation

$$c_t = \mathbb{E}_t \left[\underbrace{a_{t+1}}_{\text{exp. income}} - (r_t - p_{t+1} + p_t) \right]$$

with flexible prices the real rate increases automatically

Expectations' shocks and business cycles (continued)

- Nominal rigidity can help (Christiano, Motto and Rostagno (2006))
- Problem 2: monetary policy accommodation of demand shocks is typically suboptimal
- Euler equation

$$c_t = \mathbb{E}_t \left[\underbrace{a_{t+1}}_{\text{exp. income}} - (r_t - p_{t+1} + p_t) \right]$$

with full information optimal to increase r

Expectations' shocks and business cycles (continued)

- Imperfect information + nominal rigidity can help
- Problem 3: policy rules still able to wipe out demand shocks
- ...but this is not optimal
- a theory of demand shocks that survive optimal policy

Linear equilibrium

Model

Concluding

- Future superior information + forward looking consumers
 - → policy can induce efficient use of dispersed information
- Related themes: King (1982), Svensson and Woodford (2003), Aoki (2003)

- Efficient use of dispersed information ≠ full stabilization output gap
- Still some offsetting of demand shocks is feasible and desirable
- Clearly this requires commitment, which may be tough (bubble example)