Handout on taxing savings \square

E．Saez，The－Desirability ofCommodityTaxation Under＿Non－Linear【In－

 2002，217－230
Notation

x_{i} consumption in period \square of household $\mathbb{}$
c_{i} consumption in period 2 of householdi
$z_{i} \quad$ earnings $\square f$ household \mathbb{i}
$n_{i} \quad$ skill \quad of household「i
$\delta_{i} \quad$ discount factor Df household 1
U^{i} utility \quad of householdil \square concave
f_{i} number ©f workes of typei

R 1币lus thereturn to capital
Utility
Weassumeasimpleadditiveßstructure：

$$
\begin{equation*}
U^{i}\left[x, c, z / n_{i}\right]=u[x]+\delta_{i} u[c]-v\left[z / n_{i}\right] \square \tag{1}
\end{equation*}
$$

Full nonlinear taxation(that is not justrepeated annualincomeltaxation): \square
Fornotational convenience, assume the real return历on capital is Zero.
$\operatorname{Maximize}_{x, c, z} \quad \sum f_{i}\left(u\left[x_{i}\right]+\delta_{i} u\left[c_{i}\right]-v\left[z_{i} / n_{i}\right]\right) \square$
subject|to: $\square \quad E+\sum f_{i}\left(x_{i}+R^{-1} c_{i}-z_{i}\right) \leq 0$

$$
\begin{align*}
& u\left[x_{i}\right]+\delta_{i} u\left[c_{i}\right]-v\left[z_{i} / n_{i}\right] \geq u\left[x_{j}\right]+\delta_{i} u\left[c_{j}\right]-v\left[z_{j} / n_{i}\right] \\
& \text { for all i and } \mathrm{j} \tag{2}
\end{align*}
$$

Assume two types. Assume the $\begin{aligned} & \text { only } \\ & \text { binding moral hazard constraint is } \square\end{aligned}$ type 1 considering imitating type $2 . \square$
$\operatorname{Maximize}_{x, c, z} \quad f_{1}\left(u\left[x_{1}\right]+\delta_{1} u\left[c_{1}\right]-v\left[z_{1} / n_{1}\right]\right)+f_{2}\left(u\left[x_{2}\right]+\delta_{2} u\left[c_{2}\right]-v\left[z_{2} / n_{2}\right]\right)$
subject $\mathrm{to}: \quad E+\sum f_{i}\left(x_{i}+R^{-1} c_{i}-z_{i}\right) \leq 0 \square$

$$
\begin{equation*}
u\left[x_{1}\right]+\delta_{1} u\left[c_{1}\right]-v\left[z_{1} / n_{1}\right] \geq u\left[x_{2}\right]+\delta_{1} u\left[c_{2}\right]-v\left[z_{2} / n_{1}\right] \tag{3}
\end{equation*}
$$

FOC: \square

$$
\begin{align*}
& f_{1} u^{\prime}\left[x_{1}\right]-\lambda f_{1 ■}+\mu u^{\prime}\left[x_{1}\right]=0 \tag{4}\\
& f_{1} \delta_{1} u^{\prime}\left[c_{1}\right]-\lambda f_{1} R^{-1 \square}+\mu \delta_{1} u^{\prime}\left[c_{1}\right]=0 \tag{5}\\
&-f_{1} v^{\prime}\left[z_{1} / n_{1}\right] / n_{1 \square}+\lambda f_{1 ■}-\mu v^{\prime}\left[z_{1} / n_{1}\right] / n_{1 \square}=0 \tag{6}\\
& f_{2} u^{\prime}\left[x_{2}\right]-\lambda f_{2 \square}-\mu u^{\prime}\left[x_{2}\right]=0 \tag{7}\\
& f_{2} \delta_{2} u^{\prime}\left[c_{2}\right]-\lambda f_{2} R^{-1 \square-\mu \delta_{1} u^{\prime}\left[c_{2}\right]}=0 \tag{8}\\
&-f_{2} v^{\prime}\left[z_{2} / n_{2}\right] / n_{2}+\lambda f_{2}+\mu v^{\prime}\left[z_{2} / n_{1}\right] / n_{1 \square}=0 \tag{9}
\end{align*}
$$

FirstIet[usreviewthefamiliarresult that thereisnomarginaltaxationof \square earningsat the topoftheearningsdistribution. FromTheFOCforfirst-period \square earningsand consumption, We Thave:

$$
\begin{equation*}
\left(f_{1 \square}+\mu\right) u^{\prime}\left[x_{1}\right]=\lambda f_{1 ■}=\left(f_{1 \square}+\mu\right) v^{\prime}\left[z_{1} / n_{1}\right] / n_{1 \square} \tag{10}
\end{equation*}
$$

 have:

$$
\begin{equation*}
\left(f_{1 \square}+\mu\right) u^{\prime}\left[x_{1}\right]=\lambda f_{1}=\left(f_{1}+\mu\right) \delta_{1} R u^{\prime}\left[c_{1}\right] \square \tag{11}
\end{equation*}
$$

Now【et■us turn to type2. \square First, the marginal taxation of work: \square

$$
\begin{aligned}
\left(f_{2 \square}-\mu\right) u^{\prime}\left[x_{2}\right] & =\lambda f_{2}=f_{2} v^{\prime}\left[z_{2} / n_{2}\right] / n_{2 \square}-\mu v^{\prime}\left[z_{2} / n_{1}\right] / n_{1 \square} \\
& =\left(f_{2 \square}-\mu\right) v^{\prime}\left[z_{2} / n_{2}\right] / n_{2}+\mu\left(v^{\prime}\left[z_{2} / n_{2}\right] / n_{2} \square v^{\prime}\left[z_{2} / n_{1}\right] / n_{1}\right) \square
\end{aligned}
$$

With \llbracket convex and $\left[n_{1}>n_{2}\right.$, we have $\vec{v}\left[z_{2} / n_{2}\right] / n_{2}>v^{\prime}\left[z_{2} / n_{1}\right] / n_{1}$. Thus we have $\llbracket u^{\prime}\left[x_{2}\right]>v^{\prime}\left[z_{2} / n_{2}\right] / n_{2}$. \square This implies marginal taxation of \subset earnings \square

 goods.

Turning to savings for type 2 :

$$
\begin{align*}
\left(f_{2 \square}-\mu\right) u^{\prime}\left[x_{2}\right] & =\lambda f_{2}=f_{2} \delta_{2} R u^{\prime}\left[c_{2}\right]-\mu \delta_{1} R u^{\prime}\left[c_{2}\right] \square \tag{13}\\
& =\left(f_{2 \square}-\mu\right) \delta_{2} R u^{\prime}\left[c_{2}\right]+\mu\left(\delta_{2 \square}-\delta_{1}\right) R u^{\prime}\left[c_{2}\right] \square \tag{14}
\end{align*}
$$

 $\delta_{2}<\delta_{1}$. Therefore (with $\left.f_{2 \square}-\mu>0\right)$ we have \square

$$
\begin{equation*}
u^{\prime}\left[x_{2}\right] \nless \delta_{2} R u^{\prime}\left[c_{2}\right] \square \tag{15}
\end{equation*}
$$

That is, type-2 wouldsave if thatwere sothere is marginal taxation of savings.

