14.472 Handout On Optimal Tax Treatment of Private Contributions for Public Goods with and without Warm Glow Preferences

February 2004

$1 \square$ Standard Preferences \square

1.1 Optimal Public Provision \Box

 $\text{Maximize}_{c,G} \quad \sum_{n=1}^{\square} N_n \left(u \left[c_n \right] - a_{nn} + \mathbb{B}_n v \left[G \right] \right) \square$

subject to: $\Box = E + \overline{p}G + [\sum_{n=1}^{\Box} N_n (c_n - n)] \le 0 \Box$

 $u[c_n] - a_{nn} + \mathbb{B}_n v[G] \ge u[c_m] - a_{mn} + \mathbb{B}_n v[G] \square \text{for } \mathbb{I}n < n \text{ for } \square \mathbb{I}n$ $(1) \square$

Forming a Lagrangian, $we have \square$

$$L = \Box \sum_{n=1}^{\square} \sum_{n=1}^{\square} N_n \left(u \left[c_n \right] - a_{nn} + \mathcal{B}_n v \left[G \right] \right) \oplus \lambda \left(E + \mathcal{P}G + \sum_{n=1}^{\square} N_n \left(c_n - n \right) \right) (2) \Box$$
$$+ \left[\sum_{n=1}^{\square} \sum_{n=1}^{\square} \mu_{nm} \left(u \left[c_n \right] - a_{nn} + \mathcal{B}_n v \left[G \right] - \left(u \left[c_m \right] - a_{mn} + \mathcal{B}_n v \left[G \right] \right) \right) \Box$$

 $The \texttt{IFOC} \texttt{for public} \texttt{good} \texttt{provision} \texttt{is} \square$

$$\sum_{n=1}^{\square} N_n b_n v' \left[G \right] = \Delta p \tag{3}$$

$1.2 \Box$ Subsidized Private Provision

$$c_n = \overline{x}_n - (1 - s_n) pg_n \tag{4}$$

Utility can be written: \Box

$$u \left[x_n - (1 \Box s_n) p g_n \right] - a_{nn} + \mathcal{B}_n v \left[G_n + \mathcal{G}_n \right] \Box$$
(5)

 $The \verb|contributions| for \verb|workers| \verb|who|| make \verb|positive| \verb|contributions| satisfy \square$

$$(1 \vdash s_n) p u' [c_n] = (1 \dashv s_n) p u' [x_n - (1 \vdash s_n) p g_n] = b_n v' [G_{\neg_n} + g_n] = b_n v' [G] \square$$

$$(6) \square$$

Social welfare \square maximization \square

Maximize_{c,G,g}
$$\sum_{n=1}^{n} N_n \left(u \left[c_n \right] - a_{nn} + \mathbb{D}_n v \left[G \right] \right) \square$$

subject
$$\mathbb{I}_{0}$$
: $E + \overline{p}G + \sum_{n=1}^{\square} N_{n} (c_{n} - n) \leq 0 \square$
 $u [c_{2}] - a_{22\square} + \overline{b}_{2} v [G] \geq u [c_{1}] - a_{12\square} + \overline{b}_{2} v [G - g_{2\square} + \overline{g}_{1}]$
 $G \geq \sum_{n=1}^{\square} N_{n} g_{n}; \square g_{n} \geq 0 \square$ for $\mathbb{I}_{0} \mathbb{I}_{n}$

$$(7) \square$$

The optimum will have one of two forms - either both have the same consumption and (generically) the incentive compatibility constraint is not binding, or the optimum will have the incentive compatibility constraint binding.

Note that the subsidy rate for type I can exceed the subsidy rate for type 2 and still support the optimum. Using the maximal subsidy for type 1 that still leaves a zero contribution, we have:

$$(1 \square s_1) p u'[c_1] = b_1 v'[G] \square \tag{8}$$

$$(1 \square s_2) p u'[c_2] = b_2 v'[G] \square$$

$$(9) \square$$

With $\mathbb{D}_{1\square} = \mathbb{D}_2$, we have $\mathbb{D}_{1\square} \ge s_{2\square}$ since $\mathbb{C}_{1\square} \le c_{2\square}$ with $\mathbb{C}_{1\square}$ incentive $\mathbb{C}_{2\square}$ on straint $\mathbb{C}_{2\square}$ binding. \square

 $If \verb!Ithe \verb!Incentive \verb!Compatibility \verb!Constraint \verb!Ibinds, \verb!Ithe \verb!Constraint \verb!Ibecomes \verb!]}$

$$u[c_{2}] - a_{22\Box} + \mathcal{B}_{2}v[G] = \overline{u}[c_{1}] - a_{12\Box} + \mathcal{B}_{2}v[G - G/N_{2}]\Box$$
(10)

The FOC for the public good satisfies: \Box

$$\sum_{n=1}^{\square} N_n b_n v'[G] = \Delta p - \mu b_2 (v'[G] - v'[G(1 \oplus 1/N_2)] (1 \oplus 1/N_2)) \square \quad (11)$$

This may for may not satisfy the Samuelson rule and can deviate in either direction depending on the shape of the public good utility function, that is the sign of $(v'[G] - v'[G(1 \mapsto 1/N_2)] (1 \mapsto 1/N_2))$. If v'lis small, this is close to the Samuelson rule.

2 $\square Warm \square Glow \square Preferences \square$

With preferences $\mathbb{I}_{l}[c_{n}] - a_{nn} + b_{n}v[G] + w[g_{n}]$, the FOC for individual donations for workers who make positive contributions satisfies

$$(1 - s_n) p u'[c_n] = (1 - s_n) p u'[x_n - (1 - s_n) p g_n] \Box$$
(12)
$$\Box$$
$$= \Box b_n v'[G_n] + w'[g_n] = b_n v'[G] + w'[g_n] \Box$$

The donation \Box evel with \Box zero $subsidy (the minimum donation <math>\Box$ evel), \Box $g[c_n,G]$, satisfies \Box the findividual FOC \Box

$$pu'[c_n] = pu'[x_n - pg_n] = b_n v'[G_{n} + g_n] + w'[g_n] = b_n v'[G] + w'[g_n] \square (13) \square$$

 $Differentiating \verb"fthe fimplicit" equation, \square$

$$\frac{\partial g}{\partial c} = \Box_{w''^{\square}}^{pu''^{\square}} > 0, \\ \frac{\partial g}{\partial G} = \Box_{w''^{\square}}^{-bv''^{\square}} < 0.$$
(14)

2.1 Social Welfare Optimization

Considering the two-types model with \mathbb{Q} ne public \mathbb{Q} ood, we \mathbb{C} an \mathbb{W} it a formulation allowing \mathbb{W} arm \mathbb{Q} low \mathbb{T} of enter $(\theta = 1)$ and not enter $(\theta = 0)$ social \square welfare. \square

Maximize_{c,G}
$$\sum_{n=1}^{d} N_n \left(u \left[c_n \right] - a_{nn} + bv \left[G \right] + \theta w \left[g_n \right] \right) \Box$$

subject
$$\exists c: \Box = E + pG + [\sum_{n=1}^{\sqcup} N_n (c_n - n)] \le 0 \Box$$

 $u [c_2] - a_{22\Box} + bv [G] + w [g_2] \ge u [c_1] - a_{12\Box} + bv [G - g_{2\Box} + g_1] + w [g_1] \Box$
 $G \ge \sum_{n=1}^{\Box} N_n g_n; \Box g_n \ge g [c_n, G] \text{ for all } m$

$$(15) \Box$$

Differentiating we have lots of FOC: \Box

$$\frac{\partial L}{\partial c_{1\square}} = \Box N_1(u'[c_1] - \lambda) - \mu u'[c_1] - \xi_1 \frac{\partial g[c_1, G]}{\partial c} = 0 \Box$$
(16)

$$\frac{\partial L}{\partial c_{2\square}} = \Box N_{2\square}(u'[c_2] - \lambda) + \mu u'[c_2] - \xi_{2\square} \frac{\partial g[c_2, G]}{\partial c} = 0 \ \Box$$
(17)

$$\frac{\partial L}{\partial G} = \Box \sum \left(N_n bv' \left[G \right] - \xi_n \frac{\partial g \left[c_n, G \right]}{\partial G} \right) - \lambda p + \mu b \left(v' \left[G \right] - v' \left[G - g_2 \Box + g_1 \right] \right) + \nu = 0$$

$$(18) \Box$$

$$\frac{\partial L}{\partial g_1} = \Box N_1 \theta w' [g_1] - \mu \left(bv' [G - g_2 + g_1] + w' [g_1] \right) - \nu N_1 + \xi_1 = 0 \Box \quad (19)$$

$$\frac{\partial L}{\partial g_2} = \Box N_2 \theta w' [g_2] + \mu \left(bv' [G - g_2 + g_1] + w' [g_2] \right) - \nu N_2 + \xi_2 = 0 \Box \quad (20)$$

We consider the FOC separately for the values of \mathcal{O} of \mathcal{O} and \mathbb{I} .

2.2 Warm Glow Preferences that do not enter Social Welfare: $\theta = 0$

Increasing the donation of the high type while lowering the donation of the low type weakens the line number of the light constraint while the lower limit on $g_{1^{-}}$ is thit. Similarly, donations by the high type dominate public provision. Thus we know that $g_{1^{-}} = g[c_1, G]$. Assuming that public good supply is less than optimal without any subsidization, we also thave no binding minimum donation constraint for the high type, $\xi_{2^{-}} = 0$. Thus we can write the FOC (16) and (17) for the case $\theta = 0$ as -

$$\frac{\partial L}{\partial c_{1\square}} = N_{1\square}(u'[c_1] - \lambda) - \mu u'[c_1] - \xi_{1\square} \frac{\partial g[c_1, G]}{\partial c} = 0 \ \square$$
(21)

$$\frac{\partial L}{\partial c_{2\square}} = N_{2\square}(u'[c_2] - \lambda) + \mu u'[c_2] = 0$$
(22)

Turning to the other FOC, with $\overline{g}_{1\Box}$ at fits minimum, $\mathbb{I}(18)$ and $\mathbb{I}(20)$ (become \Box

$$\frac{\partial L}{\partial G} = bv'[G] \sum_{n=1}^{\square} N_n - \xi_1 \frac{\partial g[c_1, G]}{\partial G} - \lambda p + \mu b(v'[G] - v'[G - g_2] + g_1]) + \nu = 0$$
(23)

$$\frac{\partial L}{\partial g_{2\square}} = \mu \left(bv' \left[G - g_{2\square} + g_1 \right] + w' \left[g_2 \right] \right) - \nu N_{2\square} = 0 \ \square$$
(24)

It is plausible for all but very large donors that v''^{\Box} is small enough that $v''[G] - v'[G - g_2 + g_1]$ is very small. Then the FOC for public good supply

 $is \Box approximately \Box$

$$\frac{\partial L}{\partial G} \approx bv' [G] \sum_{n=1}^{\square} N_n - \xi_1 \frac{\partial g [c_1, G]}{\partial G} - \lambda p + \overline{\nu} = 0 \ \Box$$
(25)

 $We \verb"Can@xpress["the["deviation["from["the["Samuelson["condition["as"]"]])] \\$

$$bv'[G] \square \sum_{N_n \to p} \square \sum_{n=0}^{n} \lambda_n = \lambda_n \approx \xi_1 \square \frac{\partial g[c_1, G]}{\partial G} \square \nu = [\xi_1 \frac{\partial g[c_1, G]}{\partial G} \square \frac{\mu}{N_{2\square}} (bv'[G - g_2 \square + \overline{g}_1] + \overline{w}'[g_2])$$

$$(26) \square$$

Using again the assumption of a small w'', and so approximate constancy of v', and the FOC for individual donations, we can write this as

$$bv'[G] \sum_{n=1}^{\square} N_n - \lambda p = \mathbb{E}_{1\square} \frac{\partial g[c_1, G]}{\partial G} - \frac{\mu}{N_{2\square}} (1 - s_2) pu'[c_2] \square$$
(27)

 $From \verb"fthetFOC" for \verb"consumption," this \verb"consumption" has \verb"dots" and "between the second secon$

$$bv'[G] \sum_{n=1}^{\square} N_n - \lambda p \approx \xi_{1\square} \frac{\partial g[c_1, G]}{\partial G} + (1 \boxminus s_2) p(u'[c_2] - \lambda) \square$$
(28)

 $\operatorname{or}\square$

$$bv'[G] \sum_{n=1}^{\square} N_n \approx \xi_1 \frac{\partial g[c_1, G]}{\partial G} + s_2 p\lambda + (1 \boxminus s_2) pu'[c_2] \square$$
(29)

2.3 Warm Glow Preferences that do enter Social Wel-

fare: $\Box \theta = 1 \Box$

The FOC (16) \square (20) \square become \square

$$\frac{\partial L}{\partial c_{1\square}} = N_{1\square}(u'[c_1] - \lambda) - \mu u'[c_1] - \xi_{1\square} \frac{\partial g[c_1, G]}{\partial c} \stackrel{\square}{=} 0 \square$$
(30)

$$\frac{\partial L}{\partial c_2} = N_2 (u' [c_2] - \lambda) + \mu u' [c_2] - \xi_2 \frac{\partial g [c_2, G]}{\partial c} = 0.$$
(31)

$$\frac{\partial L}{\partial G} = \sum \left(N_n bv' \left[G \right] - \xi_n \frac{\partial g \left[c_n, G \right]}{\partial G} \right) - \lambda p + \mu b \left(v' \left[G \right] - v' \left[G - g_{2\Box} + g_1 \right] \right) + \nu = 0$$

$$(32)\Box$$

$$\frac{\partial L}{\partial g_{1\square}} = N_1 w' [g_1] - \mu \left(bv' [G - g_{2\square} + g_1] + w' [g_1] \right) - \nu N_{1\square} + \xi_{1\square} = 0 \square \quad (33)$$
$$\frac{\partial L}{\partial g_{2\square}} = N_2 w' [g_2] + \mu \left(bv' [G - g_{2\square} + g_1] + w' [g_2] \right) - \nu N_{2\square} + \xi_{2\square} = 0 \square \quad (34)$$

 $Donations \cite{the} \cite{the}$

If $donations of both types are subsidized (<math>\xi_1, \xi_{2\Box} = 0$), the private consumption FOC have the same form as with fully public provision.

$$\frac{\partial L}{\partial c_{1\square}} = N_{1\square}(u'[c_1] - \lambda) - \mu u'[c_1] = 0$$
(35)

$$\frac{\partial L}{\partial c_{2\square}} = N_2 (u'[c_2] - \lambda) + \mu u'[c_2] = 0$$
(36)

Assuming that the incentive dompatibility constraint is binding (($\mu > 0$), we have

$$\frac{u'[c_1]}{u'[c_2]} = \frac{1+\mu/N_2}{1-\mu/N_1} > 1 \Box$$
(37)

 $\label{eq:linear} If \texttt{Idonations} \texttt{O}f \texttt{Iboth} \texttt{I}ypes \texttt{Iare} \texttt{Isubsidized} \texttt{I}(\xi_1,\xi_2\texttt{I}=0) \texttt{:}$

$$\frac{\partial L}{\partial g_1} = \Box N_1 w' [g_1] - \mu \left(bv' [G - g_2 \Box + g_1] + w' [g_1] \right) - \nu N_1 \Box = 0 \Box \quad (38)$$
$$\frac{\partial L}{\partial g_2 \Box} = \Box N_2 w' [g_2] + \mu \left(bv' [G - g_2 \Box + g_1] + w' [g_2] \right) - \nu N_2 \Box = 0 \Box \quad (39)$$

Solving for
$$\mathbb{W}'[g_n]$$
 we have \square

$$\left(1 - \frac{\mu}{N_1}\right)w'\left[g_1\right] = \nu + \left[\frac{\mu}{N_1}bv'\left[G - g_2\right] + g_1\right] \Box$$

$$\tag{40}$$

$$\left(1 + \frac{\mu}{N_{2\square}}\right)w'[g_2] = \nu - \frac{\mu}{N_{2\square}}bv'[G - g_2\square + g_1]\square$$

$$(41)\square$$

$$bv'[G] + w'[g_1] = bv'[G] + \left(\nu + \frac{\mu}{N_{1\square}} (bv'[G - g_{2\square} + g_1])\right) / \left(1 - \frac{\mu}{N_1}\right)$$
(42)
$$= \Box \left(bv'[G] + \nu + \frac{\mu}{N_{1\square}} (bv'[G - g_{2\square} + g_1] - bv'[G])\right) / \left(1 - \frac{\mu}{N_1}\right)$$

 $We \verb"Can@valuate@the@subsidy@evel." \Box$

$$(1-s_1) = \frac{bv'[G] + w'[g_1]}{pu'[c_1]\Box} = \frac{bv'[G] + \nu + \frac{\mu}{N_{1\Box}}(bv'[G - g_2\Box + g_1] - bv'[G])}{p\lambda}$$

$$(43)\Box$$

 $Similarly, \verb"for" The \verb"high" Type" \square$

$$(1 \square s_2) = \frac{bv'[G] + \overline{w}'[g_2]}{pu'[c_2]} \square = \frac{bv'[G] + \overline{\nu} - \frac{\mu}{N_{2\square}}(bv'[G - g_2\square + \overline{g}_1] - bv'[G])}{p\lambda} \square$$

$$(44)\square$$

Taking the Tatio□

$$\frac{1 \boxminus s_1}{1 \trianglerighteq s_2} = \frac{bv'[G] + \overline{\nu} + \underline{\mu}_{N_1}(bv'[G - g_2] + \overline{g}_1] - bv'[G])}{bv'[G] + \overline{\nu} - \frac{\mu}{N_2}(bv'[G - g_2] + \overline{g}_1] - bv'[G])} > 1 \Box$$
(45)

Thus the high type receives a thigher subsidy. If, as is plausible, \mathcal{W}''^{\Box} is small relative to individual donations, then $\mathcal{U}(1 \mapsto s_1) / (1 \mapsto s_2) \approx 1.$

If donations of both types are subsidized $(\xi_1, \xi_2 = 0)$ and \overline{v}'' is small, the FOC for public good flevel becomes approximately:

$$bv'[G] \square N_n - \lambda p + \square \approx 0 \square$$
(46)

$$bv'[G] \sum_{N_n} \approx \lambda p - \nu = \Box p - w'[g_2] - \frac{\mu}{N_{2\Box}} (bv'[G] + \overline{w}'[g_2]) \Box (47) \Box$$
$$= \Box \lambda p - w'[g_2] - \frac{\mu}{N_{2\Box}} (1 \Box s_2) pu'[c_2] \Box$$
$$= \Box \lambda p - w'[g_2] + (1 \Box s_2) p (u'[c_2] - \lambda) \Box$$
$$= \Box s_2 \lambda p + (1 \Box s_2) pu'[c_2] - w'[g_2] \Box$$

 $\label{eq:linear} If \square v' \square is \square uch \square arger \square han \square v', then \square he \square ast \square wo \square terms \square approximately \square cancel \square and the \square FOC \square s \square is I he only loss to flow the D he is I he only \square s \square flow I fl$

 $\label{eq:linear} the \cite{fighthermarginal} \cite{$

$$bv'[G] \sum_{n=1}^{\square} N_n \approx s_1 \lambda p + (1 \boxminus s_1) pu'[c_1] - w'[g_1] \square$$

$$(48) \square$$

3 Notation \square

${\rm skillfindex} \square ({\rm equal} \square {\rm to} \square {\rm to} \square) \square$
number@f[workers@f skill]n
compensation at Gob of skill n
$\label{eq:consumption} \ensuremath{\mathbb{O}} f \ worker \ensuremath{\mathbb{I}} holding \ job \ of \ skill \ensuremath{\mathbb{D}} h$
$utility @fprivate[good] consumption \square$
disutility of labor for a worker of skill n holding a job of skill n
public good supply
utility of \square bublic \square consumption \square
donation@ftworkertholding@tjob@ftskillm
warm glow latility
${\rm public} \verb"good" \verb"provision" \verb"het" of \verb"donation" of \verb"a" worker" \verb"holding" "a" job" of \verb"skill" "n" and "state" and "s$
cost per unit of the public good \Box
$other \capuellic \capuelle expenditures \ca$
donation Subsidy Frate for worker in Gob of Skill In
$Lagrangian @n[]the []tesource @constraint \square$
$Lagrangians @ \texttt{On The lincentive Compatibility constraints } \square \\$
$Lagrangian @n[] the @dding up constraint [for [] public [] good [] provision \square \\$
$Lagrangians @ n \cite $
$index \verb"fod is tinguish \verb"SWF" \texttt{A3} th \verb"and" without \verb"warm" glow \verb"litility" \square$