14.54 International Trade —Lecture 3: Preferences and Demand—

Utility maximization

- Budget set
- Preferences
- Solution
- a Relative demand
- e Homothetic Preferences
 - Definition
 - Properties
 - S Examples

The small graphs on slides 3-5, 7-19, 21, and 24-28 are courtesy of Marc Melitz. Used with permission.

- 2 goods: Cloth (C) and Food (F); Consumption level $D = (D_C, D_F)$
- Given prices p_C and p_F and income I
- Budget set is set of consumption bundles such that $p_C D_C + p_F D_F \le I$

• p_C/p_F is the relative price of C (measured in units of F)

Budget Set With Endowment

- In a trading environment, income is determined by value of endowment $E = (E_C, E_F)$ (bundle of goods that can be traded)
- So budget line is given by

$$p_C D_C + p_F D_F = p_C E_C + p_F E_F \Leftrightarrow \frac{p_C}{p_F} D_C + D_F = \frac{p_C}{p_F} E_C + E_F$$

 \Rightarrow Only relative price p_C/p_F matters! ('nominal' prices are irrelevant)

Preferences

- Represented by a utility function $U(D_C, D_F)$
- Recall that utility is an ordinal concept, so units don't matter (only ranking)
 - U + a, a.U, U^2 , \sqrt{U} , logU, e^U all represent the same preferences
- Marginal utility of each good are assumed to be non-negative:

$$MU_{C} = \frac{\partial U\left(D_{C}, D_{F}\right)}{\partial D_{C}} \geq 0 \text{ and } MU_{F} = \frac{\partial U\left(D_{C}, D_{F}\right)}{\partial D_{F}} \geq 0$$

• Preferences are completely summarized by an indifference curve map $U(D_C, D_F) = \overline{U}$ for any \overline{U} :

- At any point on an indifference curve, the marginal rate of substitution is defined as $MRS = MU_C / MU_F$
 - Important note: to avoid confusion, will always refer to MRS in absolute value (a positive number)
 - You may have seen it defined as $MRS = -MU_C/MU_F$
 - The *MRS* at any consumption point is the slope of the tangent to the indifference curve at that point
- In words: *MRS* is the amount of *F* a consumer is willing to trade for one unit of *C*
 - That is, leaves the consumer on the same indifference curve (utility level remains constant)
 - It is the consumer's valuation of a unit of C -measured in units of F
 - The MRS captures the substitutability between C and F at the current consumption point

Marginal Rate of Substitution (Cont.)

- Further assumption on preferences: they are (weakly) convex
- Indifference curves are bowed out to the origin
- MRS is decreasing as consumption of C increases
- The more C is consumed, the less valuable it becomes relative to F

- Consumer is always indifferent between $\Delta D_C = b$ and $\Delta D_F = a$
- *MRS* is constant at *a*/*b*
- What does this imply about the substitutability of C and F?

•
$$U(D_C, D_F) = \min \{aD_C, bD_F\}$$

- Consumer always wants to consume b units of C with a units of F
- MRS is undefined
- What does this imply about the substitutability of C and F?

Utility Maximization

- At an interior optimum, $MRS = p_C/p_F$
- Whenever $MRS > p_C / p_F$, consumer wants to trade F for C
- Whenever $MRS < p_C / p_F$, consumer wants to trade C for F

Tangency of Budget Line and Indifference Curve at the Interior Optimum

• Why is this a necessary condition?

Corner Solutions to Utility Maximization Problem

- $D_C = 0$ is an optimum if $MRS < p_C/p_F$ at that point. Why?
- Consumer wants to trade *C* for *F*, but there is no more *C* left to trade!

Corner Solutions to Utility Maximization Problem

- $D_F = 0$ is an optimum if $MRS > p_C/p_F$ at that point. Why?
- Consumer wants to trade *F* for *C*, but there is no more *F* left to trade!

• Given preferences and endowment *E*, optimal (util. max) demand *D* can be calculated for any given relative price p_C/p_F

• Given preferences and endowment E, optimal (util. max) demand D can be calculated for any given relative price p_C/p_F

• Given preferences and endowment E, optimal (util. max) demand D can be calculated for any given relative price p_C/p_F

Utility Maximization and Relative Demand (Cont.)

• This pattern of demand can be represented as a relative demand curve i.e. D_C/D_F as a function of p_C/p_F :

• In general, a relative demand curve (*RD*) will depend on the consumer's endowment point *E*

• Definition: MRS is constant along any ray from the origin

• A single indifference curve summarizes all the information about preferences

• Changes in income are proportionally reflected in the optimal demand for all goods (holding prices fixed)

• This leads to some very important aggregation properties across consumers with different income levels

- Cobb-Douglas preferences: $U(D_C, D_F) = (D_C)^a (D_F)^b$ with a, b > 0
 - Consumer always spends a constant share of his/her income on both goods:

$$\frac{p_C D_C}{p_C D_C + p_F D_F} = \frac{a}{a+b} \text{ and } \frac{p_F D_F}{p_C D_C + p_F D_F} = \frac{b}{a+b}$$

- Linear preferences
- Leontief preferences

• If consumers have the same homothetic preferences, then they will always consume the same relative amount of *C* and *F* –regardless of differences in their endowments

• Thus, the *RD* curve for any homothetic preferences is independent of the consumer's endowment

Aggregation Property of Homothetic Preferences

- Consider N consumers indexed by i = 1..N
- For each consumer $i : pD_C^i + D_F^i = pE_C^i + E_F^i$ (budget constraint) where $p = p_C/p_F$ is the relative price
- Now sum the budget constraints:

$$p\sum_{i=1}^{N}D_{C}^{i} + \sum_{i=1}^{N}D_{F}^{i} = p\sum_{i=1}^{N}E_{C}^{i} + \sum_{i=1}^{N}E_{F}^{i} \Leftrightarrow pD_{C} + D_{F} = pE_{C} + E_{F}$$

where $\mathbf{D} = (D_C, D_F)$ is aggregate demand and $\mathbf{E} = (E_C, E_F)$ is the aggregate endowment –over all N consumers

• Also, $D_C^i/D_F^i = RD(p)$ for all consumers *i* so this must also hold in the aggregate: $D_C/D_F = RD(p)$

 \Rightarrow Aggregate demand is the same as if it were generated by a single consumer who owns the aggregate endowment *E* and shares the same homothetic preferences as the individual consumers

- Can capture all the properties of aggregate demand for a country by modeling the demand of a single consumer
- Furthermore, this aggregate demand is independent of the distribution of endowments (hence incomes) across consumers
- Important note: If the welfare of this aggregate consumer is increasing (or decreasing) then this will imply that overall welfare is also increasing (or decreasing)
 - But this does not mean that the welfare of all individual consumers is increasing (or decreasing)

• Recall that any homothetic preferences can be exactly described by the associated relative demand curve (since it is independent of endowments)

• Consider 2 consumers with different homothetic preferences (1 and 2):

- Who likes C relatively more?
- Consumer 2 does: at same p_C/p_F , he/she will always demand relatively more C $(D_C^1/D_F^1 < D_C^2/D_F^2)$

• Consider 2 consumers with different homothetic preferences (1 and 2):

- Who likes *C* relatively more? What is main difference between preferences?
- Consumer 1 considers C and F to be relatively closer substitutes (than consumer 2 does) -his/her demand is more elastic

• Consider 4 consumers with different homothetic preferences (1-4):

• What are the relative demands?

• Consider 4 consumers with different homothetic preferences (1-4):

• What are the relative demands?

MIT OpenCourseWare https://ocw.mit.edu

14.54 International Trade Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.