14.54 International Trade ——Lecture 3: Preferences and Demand-_

Today's Plan

(1) Utility maximization
(1) Budget set
(2) Preferences
(3)Solution
(9) Relative demand
(2) Homothetic Preferences
(1) Definition
(2) Properties
(3) Examples

The small graphs on slides 3-5, 7-19, 21, and 24-28 are courtesy of Marc Melitz. Used with permission.

Budget Set

- 2 goods: Cloth (C) and Food (F); Consumption level $D=\left(D_{C}, D_{F}\right)$
- Given prices p_{C} and p_{F} and income I
- Budget set is set of consumption bundles such that $p_{C} D_{C}+p_{F} D_{F} \leq I$

- p_{C} / p_{F} is the relative price of C (measured in units of F)

Budget Set With Endowment

- In a trading environment, income is determined by value of endowment $E=\left(E_{C}, E_{F}\right)$ (bundle of goods that can be traded)
- So budget line is given by

$$
p_{C} D_{C}+p_{F} D_{F}=p_{C} E_{C}+p_{F} E_{F} \Leftrightarrow \frac{p_{C}}{p_{F}} D_{C}+D_{F}=\frac{p_{C}}{p_{F}} E_{C}+E_{F}
$$

\Rightarrow Only relative price p_{C} / p_{F} matters! ('nominal' prices are irrelevant)

Preferences

- Represented by a utility function $U\left(D_{C}, D_{F}\right)$
- Recall that utility is an ordinal concept, so units don't matter (only ranking)
- $U+a, a . U, U^{2}, \sqrt{U}, \log U, e^{U}$ all represent the same preferences
- Marginal utility of each good are assumed to be non-negative:

$$
M U_{C}=\frac{\partial U\left(D_{C}, D_{F}\right)}{\partial D_{C}} \geq 0 \text { and } M U_{F}=\frac{\partial U\left(D_{C}, D_{F}\right)}{\partial D_{F}} \geq 0
$$

- Preferences are completely summarized by an indifference curve map $U\left(D_{C}, D_{F}\right)=\bar{U}$ for any $\bar{U}:$

Marginal Rate of Substitution

- At any point on an indifference curve, the marginal rate of substitution is defined as $M R S=M U_{C} / M U_{F}$
- Important note: to avoid confusion, will always refer to MRS in absolute value (a positive number)
- You may have seen it defined as $M R S=-M U_{C} / M U_{F}$
- The MRS at any consumption point is the slope of the tangent to the indifference curve at that point
- In words: MRS is the amount of F a consumer is willing to trade for one unit of C
- That is, leaves the consumer on the same indifference curve (utility level remains constant)
- It is the consumer's valuation of a unit of C-measured in units of F
- The MRS captures the substitutability between C and F at the current consumption point

Marginal Rate of Substitution (Cont.)

- Further assumption on preferences: they are (weakly) convex
- Indifference curves are bowed out to the origin
- MRS is decreasing as consumption of C increases
- The more C is consumed, the less valuable it becomes relative to F

Example: Linear Preferences

- $U\left(D_{C}, D_{F}\right)=a D_{C}+b D_{F}$

- Consumer is always indifferent between $\Delta D_{C}=b$ and $\Delta D_{F}=a$
- MRS is constant at a / b
- What does this imply about the substitutability of C and F ?

Example: Leontief Preferences

- $U\left(D_{C}, D_{F}\right)=\min \left\{a D_{C}, b D_{F}\right\}$
- Consumer always wants to consume b units of C with a units of F
- $M R S$ is undefined
- What does this imply about the substitutability of C and F ?

Utility Maximization

- At an interior optimum, $M R S=p_{C} / p_{F}$
- Whenever MRS $>p_{C} / p_{F}$, consumer wants to trade F for C
- Whenever $M R S<p_{C} / p_{F}$, consumer wants to trade C for F

Tangency of Budget Line and Indifference Curve at the Interior Optimum

- Why is this a necessary condition?

Corner Solutions to Utility Maximization Problem

- $D_{C}=0$ is an optimum if $M R S<p_{C} / p_{F}$ at that point. Why?
- Consumer wants to trade C for F, but there is no more C left to trade!

Corner Solutions to Utility Maximization Problem

- $D_{F}=0$ is an optimum if $M R S>p_{C} / p_{F}$ at that point. Why?
- Consumer wants to trade F for C, but there is no more F left to trade!

Utility Maximization and Relative Demand

- Given preferences and endowment E, optimal (util. max) demand D can be calculated for any given relative price p_{C} / p_{F}

Utility Maximization and Relative Demand

- Given preferences and endowment E, optimal (util. max) demand D can be calculated for any given relative price p_{C} / p_{F}

Utility Maximization and Relative Demand

- Given preferences and endowment E, optimal (util. max) demand D can be calculated for any given relative price p_{C} / p_{F}

Utility Maximization and Relative Demand (Cont.)

- This pattern of demand can be represented as a relative demand curve i.e. D_{C} / D_{F} as a function of p_{C} / p_{F} :

- In general, a relative demand curve ($R D$) will depend on the consumer's endowment point E

Homothetic Preferences

- Definition: MRS is constant along any ray from the origin

- A single indifference curve summarizes all the information about preferences

Important Property of Homothetic Preferences for Demand

- Changes in income are proportionally reflected in the optimal demand for all goods (holding prices fixed)

- This leads to some very important aggregation properties across consumers with different income levels

Special Examples of Homothetic Preferences

- Cobb-Douglas preferences: $U\left(D_{C}, D_{F}\right)=\left(D_{C}\right)^{a}\left(D_{F}\right)^{b}$ with $a, b>0$
- Consumer always spends a constant share of his/her income on both goods:

$$
\frac{p_{C} D_{C}}{p_{C} D_{C}+p_{F} D_{F}}=\frac{a}{a+b} \text { and } \frac{p_{F} D_{F}}{p_{C} D_{C}+p_{F} D_{F}}=\frac{b}{a+b}
$$

- Linear preferences
- Leontief preferences

Homothetic Preferences and Relative Demand

- If consumers have the same homothetic preferences, then they will always consume the same relative amount of C and F-regardless of differences in their endowments

- Thus, the RD curve for any homothetic preferences is independent of the consumer's endowment

Aggregation Property of Homothetic Preferences

- Consider N consumers indexed by $i=1$.. N
- For each consumer i: $p D_{C}^{i}+D_{F}^{i}=p E_{C}^{i}+E_{F}^{i}$ (budget constraint) where $p=p_{C} / p_{F}$ is the relative price
- Now sum the budget constraints:

$$
p \sum_{i=1}^{N} D_{C}^{i}+\sum_{i=1}^{N} D_{F}^{i}=p \sum_{i=1}^{N} E_{C}^{i}+\sum_{i=1}^{N} E_{F}^{i} \Leftrightarrow p D_{C}+D_{F}=p E_{C}+E_{F}
$$

where $\mathbf{D}=\left(D_{C}, D_{F}\right)$ is aggregate demand and $\mathbf{E}=\left(E_{C}, E_{F}\right)$ is the aggregate endowment -over all N consumers

- Also, $D_{C}^{i} / D_{F}^{i}=R D(p)$ for all consumers i so this must also hold in the aggregate: $D_{C} / D_{F}=R D(p)$
\Rightarrow Aggregate demand is the same as if it were generated by a single consumer who owns the aggregate endowment E and shares the same homothetic preferences as the individual consumers

Aggregation Property of Homothetic Preferences (Cont.)

- Can capture all the properties of aggregate demand for a country by modeling the demand of a single consumer
- Furthermore, this aggregate demand is independent of the distribution of endowments (hence incomes) across consumers
- Important note: If the welfare of this aggregate consumer is increasing (or decreasing) then this will imply that overall welfare is also increasing (or decreasing)
- But this does not mean that the welfare of all individual consumers is increasing (or decreasing)

Homothetic Preferences and Relative Demand (Redux)

- Recall that any homothetic preferences can be exactly described by the associated relative demand curve (since it is independent of endowments)

Some Additional Examples

- Consider 2 consumers with different homothetic preferences (1 and 2):

- Who likes C relatively more?
- Consumer 2 does: at same p_{C} / p_{F}, he/she will always demand relatively more $C\left(D_{C}^{1} / D_{F}^{1}<D_{C}^{2} / D_{F}^{2}\right)$

Some Additional Examples (cont.)

- Consider 2 consumers with different homothetic preferences (1 and 2):

- Who likes C relatively more? What is main difference between preferences?
- Consumer 1 considers C and F to be relatively closer substitutes (than consumer 2 does) -his/her demand is more elastic

Some Additional Examples

- Consider 4 consumers with different homothetic preferences (1-4):

- What are the relative demands?

Some Additional Examples

- Consider 4 consumers with different homothetic preferences (1-4):

- What are the relative demands?

MIT OpenCourseWare
https://ocw.mit.edu

14.54 International Trade

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

