14.581 International Trade

Class notes on $4/8/2013^1$

1 The Armington Model

1.1 Equilibrium

• Labor endowments

$$L_i$$
 for $i = 1, ...n$

• CES utility ⇒ CES price index

$$P_i^{1-\sigma} = \sum_{i=1}^n (w_i \tau_{ij})^{1-\sigma}$$

• Bilateral trade flows follow gravity equation:

$$X_{ij} = \frac{(w_i \tau_{ij})^{1-\sigma}}{\sum_{l=1}^{n} (w_l \tau_{lj})^{1-\sigma}} w_j L_j$$

- In what follows $\varepsilon \equiv -\frac{d \ln X_{ij}/X_{jj}}{d \ln \tau_{ij}} = \sigma 1$ denotes the **trade elasticity**
- Trade balance

$$\sum_{i} X_{ji} = w_j L_j$$

1.2 Welfare Analysis

• Question:

Consider a foreign shock: $L_i \to L'_i$ for $i \neq j$ and $\tau_{ij} \to \tau'_{ij}$ for $i \neq j$. How do foreign shocks affect real consumption, $C_j \equiv w_j/P_j$?

• Shephard's Lemma implies

$$d \ln C_j = d \ln w_j - d \ln P_j = -\sum_{i=1}^n \lambda_{ij} \left(d \ln c_{ij} - d \ln c_{jj} \right)$$
 with $c_{ij} \equiv w_i \tau_{ij}$ and $\lambda_{ij} \equiv X_{ij} / w_j L_j$.

Gravity implies

$$d \ln \lambda_{ij} - d \ln \lambda_{jj} = -\varepsilon \left(d \ln c_{ij} - d \ln c_{jj} \right).$$

 $^{^{1}\}mathrm{The}$ notes are based on lecture slides with inclusion of important insights emphasized during the class.

• Combining these two equations yields

$$d \ln C_j = \frac{\sum_{i=1}^n \lambda_{ij} \left(d \ln \lambda_{ij} - d \ln \lambda_{jj} \right)}{\varepsilon}.$$

• Noting that $\sum_{i} \lambda_{ij} = 1 \Longrightarrow \sum_{i} \lambda_{ij} d \ln \lambda_{ij} = 0$ then

$$d\ln C_j = -\frac{d\ln \lambda_{jj}}{\varepsilon}.$$

• Integrating the previous expression yields $(\hat{x} = x'/x)$

$$\hat{C}_j = \hat{\lambda}_{jj}^{-1/\varepsilon}.$$

- In general, predicting $\hat{\lambda}_{jj}$ requires (computer) work
 - We can use exact hat algebra as in DEK (Lecture #3)
 - Gravity equation + data $\{\lambda_{ij}, Y_j\}$, and ε
- But predicting how bad would it be to shut down trade is easy...
 - In autarky, $\lambda_{jj} = 1$. So

$$C_j^A/C_j = \lambda_{jj}^{1/\varepsilon}$$

- Thus **gains from trade** can be computed as

$$GT_j \equiv 1 - C_j^A/C_j = 1 - \lambda_{jj}^{1/\varepsilon}$$

1.3

1.4 Gains from Trade

- Suppose that we have estimated trade elasticity using gravity equation
 - Central estimate in the literature is $\varepsilon = 5$
- We can then estimate gains from trade:

	λ_{jj}	$\% GT_j$
Canada	0.82	3.8
Denmark	0.74	5.8
France	0.86	3.0
Portugal	0.80	4.4
Slovakia	0.66	7.6
U.S.	0.91	1.8

2 Gravity Models and the Gains from Trade: ACR (2012)

2.1 Motivation

- New Trade Models
 - Micro-level data have lead to **new questions** in international trade:
 - * How many firms export?
 - * How large are exporters?
 - * How many products do they export?
 - New models highlight **new margins** of adjustment:
 - st From inter-industry to intra-industry to intra-firm reallocations
- Old question:
 - How large are the gains from trade (GT)?
- ACR's question:
 - How do new trade models affect the magnitude of GT?

2.2 ACR's Main Equivalence Result

- ACR focus on gravity models
 - PC: Armington and Eaton & Kortum '02
 - MC: Krugman '80 and many variations of Melitz '03
- Within that class, welfare changes are $(\hat{x} = x'/x)$

$$\hat{C} = \hat{\lambda}^{1/\varepsilon}$$

- Two sufficient statistics for welfare analysis are:
 - Share of domestic expenditure, λ ;
 - Trade elasticity, ε
- Two views on ACR's result:
 - Optimistic: welfare predictions of Armington model are more robust than you thought
 - Pessimistic: within that class of models, micro-level data do not matter

2.3 Primitive Assumptions

Preferences and Endowments

- CES utility
 - Consumer price index,

$$P_i^{1-\sigma} = \int_{\omega \in \Omega} p_i(\omega)^{1-\sigma} d\omega,$$

- One factor of production: labor
 - $-L_i \equiv \text{labor endowment in country } i$
 - $-w_i \equiv \text{wage in country } i$

Technology

• Linear cost function:

$$C_{ij}\left(\omega,t,q\right) = \underbrace{qw_{i}\tau_{ij}\alpha_{ij}\left(\omega\right)t^{\frac{1}{1-\sigma}}}_{\text{variable cost}} + \underbrace{w_{i}^{1-\beta}w_{j}^{\beta}\xi_{ij}\phi_{ij}\left(\omega\right)m_{ij}\left(t\right)}_{\text{fixed cost}},$$

q: quantity,

 τ_{ij} : iceberg transportation cost,

 $\alpha_{ij}\left(\omega\right)$: good-specific heterogeneity in variable costs,

 ξ_{ij} : fixed cost parameter,

 $\phi_{ij}(\omega)$: good-specific heterogeneity in fixed costs.

 $m_{ij}\left(t\right)$: cost for endogenous destination specific technology choice, t,

$$t \in \left[\underline{t}, \overline{t}\right], \ m'_{ij} > 0, \ m''_{ij} \ge 0$$

• Heterogeneity across goods

$$G_{j}\left(\alpha_{1},...,\alpha_{n},\phi_{1},...,\phi_{n}\right) \equiv \left\{\omega \in \Omega \mid \alpha_{ij}\left(\omega\right) \leq \alpha_{i}, \, \phi_{ij}\left(\omega\right) \leq \phi_{i}, \, \forall i\right\}$$

Market Structure

- Perfect competition
 - Firms can produce any good.
 - No fixed exporting costs.
- Monopolistic competition
 - Either firms in i can pay w_iF_i for monopoly power over a random good.
 - Or exogenous measure of firms, $\overline{N}_i < \overline{N}$, receive monopoly power.
- Let N_i be the measure of goods that can be produced in i
 - Perfect competition: $N_i = \overline{N}$
 - Monopolistic competition: $N_i < \overline{N}$

2.4 Macro-Level Restrictions

Trade is Balanced

• Bilateral trade flows are

$$X_{ij} = \int_{\omega \in \Omega_{ij} \subset \Omega} x_{ij} (\omega) d\omega$$

• $\mathbf{R1}$ For any country j,

$$\sum_{i \neq j} X_{ij} = \sum_{i \neq j} X_{ji}$$

- Trivial if perfect competition or $\beta = 0$.
- Non trivial if $\beta > 0$.

Profit Share is Constant

• $\mathbf{R2}$ For any country j,

$$\Pi_j/(\sum_{i=1}^n X_{ji})$$
 is constant

where Π_j : aggregate profits gross of entry costs, $w_j F_j$, (if any)

- Trivial under perfect competition.
- Direct from Dixit-Stiglitz preferences in Krugman (1980).
- Non-trivial in more general environments.

CES Import Demand System

• Import demand system

$$(\mathbf{w}, \mathbf{N}, \boldsymbol{ au}) \to \mathbf{X}$$

• R3

$$\varepsilon_{j}^{ii'} \equiv \partial \ln \left(X_{ij} / X_{jj} \right) / \partial \ln \tau_{i'j} = \left\{ \begin{array}{ll} \varepsilon < 0 & \quad i = i' \neq j \\ 0 & \quad otherwise \end{array} \right.$$

• Note: symmetry and separability.

CES Import Demand System

- The trade elasticity ε is an upper-level elasticity: it combines
 - $-x_{ij}(\omega)$ (intensive margin)
 - $-\Omega_{ij}$ (extensive margin).
- R3 \implies complete specialization.
- R1-R3 are not necessarily independent
 - If $\beta = 0$ then R3 \implies R2.

Strong CES Import Demand System (AKA Gravity)

• R3' The IDS satisfies

$$X_{ij} = \frac{\chi_{ij} \cdot M_i \cdot (w_i \tau_{ij})^{\varepsilon} \cdot Y_j}{\sum_{i'=1}^{n} \chi_{i'j} \cdot M_{i'} \cdot (w_{i'} \tau_{i'j})^{\varepsilon}}$$

where χ_{ij} is independent of $(\mathbf{w}, \mathbf{M}, \boldsymbol{\tau})$.

 • Same restriction on $\varepsilon_j^{ii'}$ as R3 but, but additional structural relationships

2.5 Welfare results

• State of the world economy:

$$Z \equiv (L, \tau, \xi)$$

• Foreign shocks: a change from \mathbf{Z} to \mathbf{Z}' with no domestic change.

2.6 Equivalence

• Proposition 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_j = \widehat{\lambda}_{jj}^{1/\varepsilon}.$$

- \bullet Implication: 2 sufficient statistics for welfare analysis $\widehat{\lambda}_{jj}$ and ε
- New margins affect structural interpretation of ε
 - ...and composition of gains from trade (GT)...
 - ... but size of GT is the same.

Gains from Trade Revisited

- Proposition 1 is an *ex-post* result... a simple *ex-ante* result:
- Corollary 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_{i}^{A} = \lambda_{ij}^{-1/\varepsilon}.$$

- A stronger ex-ante result for variable trade costs under R1-R3':
- Proposition 2: Suppose that R1-R3' hold. Then

$$\widehat{W}_j = \widehat{\lambda}_{ij}^{1/\varepsilon}$$

where

$$\widehat{\lambda}_{jj} = \left[\sum_{i=1}^{n} \lambda_{ij} \left(\widehat{w}_{i}\widehat{\tau}_{ij}\right)^{\varepsilon}\right]^{-1},$$

and

$$\widehat{w}_i = \sum_{j=1}^n \frac{\lambda_{ij} \widehat{w}_j Y_j \left(\widehat{w}_i \widehat{\tau}_{ij} \right)^{\varepsilon}}{Y_i \sum_{i'=1}^n \lambda_{i'j} \left(\widehat{w}_{i'} \widehat{\tau}_{i'j} \right)^{\varepsilon}}.$$

• ε and $\{\lambda_{ij}\}$ are sufficient to predict \widehat{W}_j (ex-ante) from $\hat{\tau}_{ij}$, $i \neq j$.

3 Beyond ACR's (2012) Equivalence Result: CR (2013)

3.1 Departing from ACR's (2012) Equivalence Result

- Other Gravity Models:
 - Multiple Sectors
 - Tradable Intermediate Goods
 - Multiple Factors
 - Variable Markups

• Beyond Gravity:

- PF's sufficient statistic approach
- Revealed preference argument (Bernhofen and Brown 2005)
- More data (Costinot and Donaldson 2011)

3.2 Multiple sectors, GT

- Nested CES: Upper level EoS ρ and lower level EoS ε_s

3.3 Tradable intermediates, GT

- Set $\rho=1,$ add tradable intermediates with Input-Output structure
- Labor shares are $1 \alpha_{j,s}$ and input shares are $\alpha_{j,ks}$ $(\sum_k \alpha_{j,ks} = \alpha_{j,s})$

	$\% GT_j$	$\% GT_j^{MS}$	$\% GT_j^{IO}$
Canada	3.8	17.4	30.2
Denmark	5.8	30.2	41.4
France	3.0	9.4	17.2
Portugal	4.4	23.8	35.9
U.S.	1.8	4.4	8.3

3.4 Combination of micro and macro features

- In Krugman, free entry \Rightarrow scale effects associated with total sales
- $\bullet\,$ In Melitz, additional scale effects associated with market size
- In both models, trade may affect entry and fixed costs
- All these effects do not play a role in the one sector model
- With multiple sectors and traded intermediates, these effects come back

3.5 Gains from Trade

MS, IO, PC

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
	Canao	da Chi	na Germa	ny Romania	a US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
	Canad	da Chi	na Germa	ny Romania	a US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
	Canao	da Chi	na Germa	ny Romania	a US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8

29.5

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0
MS, IO, MC (Krugman)	33.0	28.0	41.4	20.8	8.6

11.2

22.5

29.2

8.0

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0
MS, IO, MC (Krugman)	33.0	28.0	41.4	20.8	8.6
MS, IO, MC (Melitz)	39.8	77.9	52.9	20.7	10.3

3.6 From GT to trade policy evaluation

- Back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{\tau}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$
- This is what CGE exercises do
- Contribution of recent quantitative work:
 - Link to theory—"mid-sized models"
 - Model consistent estimation
 - Quantify mechanisms

3.7 Main Lessons from CR (2013)

- Mechanisms that matter for GT:
 - Multiple sectors, tradable intermediates
 - Market structure matters, but in a more subtle way
- Trade policy in gravity models:
 - Good approximation to optimal tariff is $1/\varepsilon \approx 20\%$ (related to Gros 87)
 - Large range for which countries gain from tariffs
 - Small effects of tariffs on other countries

MIT OpenCourseWare http://ocw.mit.edu

14.581 International Economics I Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.