
14.662, Spring 2015: Problem Set 3 
Due Wednesday 22 April (before class) 
Heidi L. Williams 
TA: Peter Hull 

1 Roy model: Chiswick (1978) and Borjas (1987) 

Chiswick (1978) is interested in estimating regressions like the following for a single Census year T (in his case, 
T = 1970): 

ln(wagei(T )) = X� 
iθ + δIi + α1IiYearsi + α2IiYearsi 

2 + β1IiArrivei + β2IiArrive
2 
i + Ei, 

where Ii is an indicator for foreign-born, Yearsi counts the number of years since migration, and Arrivei is the 
calendar year of arrival. 

1.	 (6 points) By substituting Arrivei = T − Yearsi into the above regression equation, show mathematically 
that in a single cross-section β1, β2, δ, α1, and α2 cannot be separately identified. 
We have 

ln(wagei(T )) = X�
iθ + δIi + α1IiYearsi + α2IiYears

2 
i + β1Ii(T − Yearsi) + β2Ii(T − Yearsi)

2 + Ei 

= X�
iθ + (δ + β1T + β2T 2)Ii + (α1 − β1 − 2β2T )IiYearsi + (α2 + β2)IiYears

2 
i + Ei 

In a single cross-section T is constant; a regression of ln(wagei(T )) on Ii, IiYearsi, and IiYears2 
i , controlling 

for X� , then identifies i

γ1 = δ + β1T + β2T 2 

γ2 = α1 − β1 − 2β2T 

γ3 = α2 + β2 

but not any of the individual δ, α1, α2, β1, or β2 coefficients separately. 

2.	 (8 points) Re-write your new regression equation from part (1) to let γ1 represent the coefficient on Ii, γ2 
∂γ1 ∂γ2represent the coefficient on IiYearsi, and γ3 represent the coefficient on IiYears2 

i . What is , and ∂T , ∂T 
∂γ3 
∂T ? Use these expressions to show that with two years of Census data (say, T = 1970, 1980) it is possible 
to identify β1, β2, δ, α1, and α2. 
We have 

∂γ1 
= β1 + 2β2T 

∂T 
∂γ2 

= −2β2
∂T 
∂γ3 

= 0 
∂T 

With two years of Census data {T1, T2}, we can run the panel (equivalently, first-differenced) specification 

Δ ln(wagei) = ρ0 + ρ1Ii + ρ2IiYearsi + ρ3IiYears
2 
i + νi 

By the above result we know such a specification will allow us to recover the underlying “structural” 
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coefficients. We expect:
 

ρP0 

ρP1 

ρP2 

ρP3 

−→ 0 

−→ (β1 + 2β2T1)ΔT 

−→ −2β2ΔT 

−→ 0 

p

p

p

p

So that from estimation of the first-differenced and levels specification we can consistently estimate 

β1 = p lim((ρP1 + ρP2T1)/ΔT ) 

β2 = p lim(−ρP2/(2ΔT )) 

and 

α1 = p lim(γP2 + ρP1ΔT ) 

α2 = p lim(γP3 + ρP2/(2ΔT )) 

δ = p lim(γP1 − (ρP1 + ρP2T1)T1/ΔT + ρP2T1
2/(2ΔT )) 

Inference on these coefficients is easy if both regressions are run simultaneously on duplicated data (this 
is a useful trick whenever you need to compute statistics off of regression coefficients). Note that this 
procedure also produces two testable implications of the model; that is, we can test whether we indeed 
have ρ0 = ρ3 = 0. 

3.	 (6 points) In order to identify both the assimilation effect and the cohort indicators while also controlling 
for Census year indicators, Borjas (1987) imposed the restriction that time-specific shocks have the same 
effect on log earnings of natives and immigrants. How might you assess the validity of this restriction? 
With additional years of data we are overidentified for α1, α2, β1, β2, and δ, and we can test whether 
pairwise comparisons of years generate significantly different estimates to test the model’s restrictions. 
Formally, we can rewrite the above equations in terms of regression moments, form the optimal second-
step GMM weighting matrix, and compute the usual Hansen J test statistic; in this case this statistic will 
be distributed approximately chi-squared with 5(N − 2) degrees of freedom for N > 2 Census years. Note 
that the year of arrival was not added to the Census until the 1970 release, so it would not have been 
possible for Chiswick to form this test (though now we can with more recent Census data). 
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2 Roy model: Rothschild and Scheuer (2013) 

Rothschild and Scheuer (2013) characterize optimal taxation in a Roy model where individuals can self-select 
into one of multiple sectors based on relative potential skill. In this problem, you will use data from the Current 
Population Survey to replicate some of their results. 

Consider an economy with a unit mass of individuals who can choose between working in either of two sectors. 
Each person has a two-dimensional skill endowment (θ, ϕ) ∈ Θ × Φ. The parameter θ captures an individual’s 
productivity in the Θ-sector and ϕ captures her ability in the Φ-sector. These endowments are jointly distributed 
with CDF F (θ, ϕ). Let S (θ, ϕ) ∈ {Θ, Φ} denote a worker’s chosen sector and PΘ = {(θ, ϕ) | S (θ, ϕ) = Θ} denote 
the set of types who choose the Θ-sector. 

Individuals have preferences over consumption c and effort e given by 

  
E 1+

E
E

U (c, e) = c − e 
1 + E

Aggregate effort in the Θ-sector is given by 
ˆ

EΘ ≡ θe (θ, ϕ) dF (θ, ϕ) 
PΘ 

for effort e(θ, ϕ), and likewise for aggregate effort in the Φ sector, EΦ. Output is a Cobb-Douglas function of 
these aggregate effort levels. 

ΘE
1−αY = Eα 
Φ 

for α ∈ (0, 1). Let E ≡ EΘ/EΦ denote relative aggregate effort. 

1.	 (6 points) What simplifying assumptions are embedded in the functional form for preferences? In particular, 
what does the parameter E capture? Use a short derivation from your undergrad micro days to justify your 
interpretation. 
Preferences are assumed quasilinear, so there will be no income effects. The disutility of effort is assumed 
constant across workers and sectors and isoelastic, with the parameter E capturing the elasticity of labor 
supply. To see this, consider an agent choosing optimal labor supply when facing wages w and a linear 
budget constraint c = we:   

E 1+
E
E

maxwe − e 
e 1 + E
∗ E=⇒ e = w
∗∂ ln e 
= E 

∂ ln w 

2.	 (6 points) Assuming that effort is directly observed by employers, derive an expression for the wage of type 
(θ, ϕ) as a function of the equilibrium value of E. Use this result to argue that wages are invariant to the 
scale of θ and ϕ. 
The marginal product of aggregate effort in each sector is   1−α∂Y EΦ 

= α
∂EΘ EΘ   α∂Y EΦ

= (1 − α)
∂EΦ EΘ
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With effort directly observed, the prevailing wage will be the marginal product of a unit of effective effort:
  
αθEα−1 , S (θ, ϕ) = Θ 

w̃(θ, ϕ) =
(1 − α)ϕEα , S (θ, ϕ) = Φ 

A worker will choose the sector paying the highest wage, so that observed wages should satisfy 

w(θ, ϕ) = max{αθEα−1 , (1 − α)ϕEα} 

Note that we can write  
αY θ , S (θ, ϕ) = Θ 

w̃(θ, ϕ) = EΘ 
ϕ(1 − α)Y EΦ 
, S (θ, ϕ) = Φ 

Scaling the distribution of θ scales both θ and EΘ by the same factor, and since only the ratio θ/EΘ is 
relevant to wages, we can without loss pick a normalization where EΘ = αY ; similarly we can normalize 
EΦ, so that the distribution of potential wages coincides with the distribution of potential talent. 

3.	 (8 points) By your argument above, we will proceed as if the distribution of wages and skills coincide. As
sume now that potential skills/wages are drawn from a bivariate lognormal distribution with means µθ and 
µϕ, variances σ2 and σϕ

2 , and correlation coefficient ρ. We want to estimate these parameters from the θ 
observed distribution of wages. To do so, we will take advantage of a useful fact about the bivariate normal 
distribution (derived in Basu and Ghosh (1978)): 

Let X and Y be distributed bivariate normal with means µx and µy, variances σ2 and σ2, and correlax y 
tion coefficient ρ. Let Z = max {X, Y }. Then the density of Z is 

g(z) = 
1 
σx 

φ 
z − µx 

σx 
Φ 

z − µ̃y 

σ̃y 
+ 

1 
σy 

φ 
z − µy 

σy 
Φ 

z − µ̃x 

σ̃x 

where  
µ̃x =

1 
γx 

[µx − (1 − γx) µy] 

µx − µy  
γx

γx 

 = 0 

= 0 

σ̃x =
σx 
|γx| 1 − ρ2 

σx
 
1 − ρ2 

γx

γx 

 = 0 

= 0 

and 

γx = 1 − ρ 
σx 

σy 

γy = 1 − ρ 
σy 

σx 

Download the March 2011 CPS earnings and hours data from the NBER website. Generate a sample of log 
hourly wages from the weekly earnings and weekly hours data.1 Please note that there is no extensive margin 
for labor force participation in this model, so you can restrict your attention to the subset of respondents 
with positive, non-missing wages. Use the fact above to estimate the parameters of the bivariate wage 
distribution.2 Use your estimates to generate a predicted wage distribution and plot your prediction against 
the distribution observed in the CPS. 
My sample has 160,373 observations of log hourly wages who report positive weekly earnings and hours 

1The relevant sample weight for the earnings variables is earnwt. 
2You may wish to experiment with different optimization packages and starting values in running this MLE; you might also find 

that trimming the distribution of raw log wages to drop extreme outliers improves the stability of your estimators. 
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Figure 1: Empirical and fitted wage distribution
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worked. From this I drop extreme observations of log wages less than zero or above six; this removes less 
than 0.5% of the sample, leaving a total of 159,651 individuals. Using the above density, the sampling 
weights, and MATLAB'SÈfminsearch algorithm, I estimate: 

µθ = 2.618,µφ = 2.181 

σθ = 0.803,σφ = 0.658 

ρ = −0.011 

These estimates are somewhere in the ballpack of Rothschild and Scheuer (2013), though they appear to 
be somewhat sensitive to the fminsearch starting values. Figure 1 plots the fitted and true distribution of 
observed wages, which is very similar to the authors’ Figure II. 

4. (8 points) Assume that the elasticity of labor supply is 0.5 and that all workers face a marginal tax rate of 
0.25 on their wages. Use these values and your estimates from part (3) to determine: 

• the effort supplied by each worker in her chosen sector 

• the share of income paid to each sector 

• the parameter α that governs the aggregate production function. 

Report and interpret your estimate of α here. You do not need to report anything for the first two results; 
they’re simply intermediate steps. 
Individuals facing a marginal tax rate of τ solve 

E 1+E 
max(1 − τ)we − e E 

e 1 + E 
∗ =⇒ e = ((1 − τ )w)E 

√∗ ∗With τ = 0.25 and E = 0.5 we thus have ei = 0.75wi. An individual’s income is then given by y = wiei 
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Figure 2: Optimal tax
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and sectoral incomes are 

Y Θ =
 √ 

0.75w 3/2 
i 

Y Φ =

PΘ √ 
0.75w 3/2 

i 
PΦ 

with the parameter α satisfying 

Y Θ 

α = 
Y Θ + Y Φ 

Using the parameters estimated above, I draw a sample of 200,000 potential wage pairs and allow individuals 
to Roy-select into their preferred sector. I then estimate α = 0.794. This is somewhat lower than the 
estimate of 0.942 the authors report, though I am able to replicate this result by simulating potential 
wages with their estimated parameters. 

5.	 (8 points) Plot the optimal tax schedule derived by Rothschild and Scheuer (2013) and provided in MTR.mat. 
Interpret the shape of this schedule. Taking the schedule as given, show how the share of workers in the 
Θ-sector varies with the sector’s offered wage. How does the average effort of Θ-sector workers move with 
wages? Plot both of these results and interpret. 
The Pareto optimal schedule is plotted in Figure 2. The marginal rate is initially increasing in wages before 
becoming more regressive beyond around 50 and tending to zero at the extreme of income. More progres
sive taxation is desirable because it indirectly redistributes income to lower skill workers from higher skill 
workers, but when there is endogenous selection in the sector higher-skill workers may respond to progres
sive taxation by shifting to their less productive sector. This effect offsets, so that the optimal marginal 
tax schedule is more regressive than it would be without Roy selection. 

Taking this schedule as given, I calculate optimal effort and earnings for each simulated individual in 
both sectors and assign the equilibrium sector, observed wage, and effort based on what is individually 
optimal. The equilibrium share of individuals in the Θ-sector is plotted in Figure 3, while the average 
effort of Θ-sector workers under the optimal tax schedule is given in Figure 4. Both are monotone but 
nonlinear in offered wages (and closely resemble the authors’ Figure III), with the more workers workers 
with marginally lower average skill entering the sector for higher wages. 

6
 



Figure 3: Equilibrium Θ-sector share with optimal tax
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Figure 4: Equilibrium average Θ-sector effort with optimal tax
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3 Compensating Differences: Lucas (1977) and Brown (1980)
 

Suppose true earnings are described by: 

ln(wageit) = β0 + β1Zit 
∗ + β2Xit + β3Ai + Eit 

where Z∗ measures working conditions, Xit measures observed time-varying worker characteristics, Ai measures it 
unobserved fixed worker characteristics, and Eit measures other unobserved factors that affect earnings (such as 
unmeasured job characteristics). Assume Eit is orthogonal to Zit

∗ , Xit, and Ai. 
You would like to estimate β1 - the compensating wage differential paid to workers to offset the disutility of 

working in jobs with higher levels of the disamenity Zit
∗ . In practice, you face two estimation problems: 

• “Ability” Ai is unobserved; suppose Ai is negatively correlated with Zit 
∗ conditional on Xit 

• Working conditions Z∗ are measured with error. For example, measurement error could arise if you assigned it 
job characteristics to a survey of workers using a match to the Dictionary of Occupational Titles data based 
only on occupation and industry, and if that occupation-industry match of job characteristics does not 
perfectly correspond to characteristics in the worker’s specific job. In particular, suppose you observe a 
noisy measure of working conditions Zit = Zit 

∗ + ηit. 

We’d like to consider the net effect of these two potential sources of bias as well as possible solutions to estimating 
the compensating differential. 

1. (6 points) Say that you estimate a cross-sectional model as in Lucas (1977): 

ln(wageit) = b0 + b1Zit + b2Xit + eit 

For a given t. Suppose in the cross section ηit is distributed as independent white noise. Derive an 
expression for the population regression coefficient b1 in terms of structural parameters. Can you sign the 
overall direction of bias? 
Denote residuals from the projection of Zit on Xit and a constant by Z̃it. We then have 

˜Cov(ln(wageit), Zit)
b1 = 

V ar(Z̃it) 

Cov(β1Zit 
∗ + β2Xit + β3Ai + Eit, Z̃it) 

= 
V ar(Z̃it) 

β1Cov(Zit
∗ , Z̃it) + β3Cov(Ai, Z̃it) 

= 
V ar(Z̃it) 
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Write:
 

Cov(Z∗ , Xit)
2 

Cov(Zit
∗ , Z̃it) =V ar(Zit

∗ ) − it

V ar(Xit) 

σ2 
Z,∗X≡σZ

2 
∗ − 

σ2 
X 

Cov(Z∗ , Xit)Cov(Ai, Z
∗ )˜	 it itCov(Ai, Zit) =Cov(Ai, Z it

∗ ) − 
V ar(Xit) 

σZ,∗X σA,Z∗ 
≡σA,Z∗ − 

σ2 
X 

Cov(Zit
∗ , Xit)

2 

V ar(Z̃it) =V ar(Zit 
∗ + Eit) + 

V ar(Xit) 
Cov(Zit

∗ , Xit)− 2 Cov(Zit 
∗ + Eit, Xit)

V ar(Xit) 

Cov(Z∗ , Xit)
2 

it=V ar(Zit
∗ ) + V ar(Eit) − 

V ar(Xit) 

σ2 
Z,∗X≡σ2 + σ2 

Z∗ E − 
σ2 
X 

Then 

σZ
2 
∗ σ2 − σ2	 

σ2 

b1 = β1 
X Z,∗X 

+ β3 
X σA,Z∗ − σZ,∗X σA,Z∗ 

σZ
2 
∗ σ2 − σ2 + σE 2σ

2 σZ
2 
∗ σ2 − σ2 + σE 2σ

2 
X Z,∗X X X Z,∗X X 

This expression incorporates both omitted-variables bias and attenuation bias in relating the population 
regression coefficient to the underlying structural parameters. The first term contains a signal-to-noise ratio 
that captures the attenuation bias due to measurement error in Zit, while the second captures omitted-
variables bias, again attenuated by measurement error. We can’t sign the total bias without knowing the 
relationship between Zit ∗, Xit, and Ait. 

2.	 (8 points) Say that, like Brown (1980), you find a panel dataset that allows you to estimate a model with 
individual fixed effects and you estimate 

Δ ln(wageit) = b1ΔZit + b2ΔXit +Δeit 

Suppose within-individual measurement error is persistent, so that ηit = ρηit−1 +νit where νit is independent 
(across both time and individuals) white noise. Derive an expression for the population regression coefficient 
b1 in terms of structural parameters. 
Again partialling out the effect of covariates, we now have the population regression coefficient identifying 

Cov(Δ ln(wageit), ΔZ̃it)
b1 = 

V ar(ΔZ̃it) 

Cov(β1ΔZit 
∗ + β2ΔXit +ΔEit, ΔZ̃it) 

= 
V ar(ΔZ̃∗ +Δηit)it 

Cov(ΔZit
∗ , ΔZ̃it) 

= β1 
V ar(ΔZ̃it) 
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Writing:
 

Cov(ΔZit
∗ , ΔXit)

2 

Cov(ΔZit
∗ , ΔZ̃it) =V ar(ΔZit

∗ ) − 
V ar(ΔXit) 

σ2 
ΔZ∗ΔX≡σ2 −ΔZ∗ 
σ2 
ΔX 

Cov(ΔZit
∗ , ΔXit)

2 

V ar(ΔZ̃it) =V ar(ΔZit
∗ ) + V ar(ΔEit) − 

V ar(ΔXit) 

Cov(ΔZit
∗ , ΔXit)

2 

=V ar(ΔZit
∗ ) + V ar((ρ − 1)Eit−1 + νit) − 

V ar(ΔXit) 

σ2 
ΔZ∗ΔX=σ2 

ΔZ∗ + (ρ − 1)2σE 
2 + σν 

2 − 
σ2 
ΔX 

we have 

σ2 − σ2 
ΔZ∗ σ2 

ΔX ΔZ∗ΔXb1 = β1 
σ2 − σ2 + (ρ − 1)2σE 2σ

2 + σν 
2σ2 

ΔZ∗ σ2 
ΔX ΔZ∗ΔX ΔX ΔX 

Since first-differencing removes the bias from omitting individual ability, we are left just with the signal-
to-noise formula for attenuation bias, now formulated in changes rather than levels. 

3.	 (6 points) Briefly discuss what problem(s) are solved by moving to the panel model, and what problem(s) 
are introduced. Is it always the case that b1 from the panel model will be an attenuated estimate of β1, so 
that we can always consistently estimate the sign of the compensating differential? 
First-differencing leaves us only with attenuation bias; by the Cauchy-Schwartz inequality σ2 ≥ΔZ∗ σ2 

ΔX 
σ2 so the ratio multiplying β1 indeed lies between zero and one. Although this bias may be more ΔZ∗ΔX 
severe than in the cross-sectional case (especially if the error in measurement is transitory but the “signal” 
is persistant), we can at least unambiguously sign β1 by the sign of b1. 
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4 Compensating differences: Gruber and Krueger (1991) and Gruber (1997)
 

Consider the formalization of the Summers (1989) model from Gruber and Krueger (1991). Suppose that labor 
demand (Ld) is given by: 

Ld = fd (W + C) 

and suppose labor supply (Ls) is given by: 

Ls = fs (W + αC) 

where C is the cost of mandated health insurance, αC is the monetary value that employees place on health 
insurance, and W is the wage rate. 

1.	 (6 points) Derive an expression for how wages change under a mandate (dW ) in terms of α, the labor dC 
demand elasticity ηd, and the labor supply elasticity ηs . Derive an analogous expression for how employment 
changes under a mandate. Give an intuition for the cases where α = 0 and α = 1. 
In equilibrium, fs(W ∗ + αC) = fd(W + C). Taking logs and differentiating with respect to C at C = 0 
gives 

f (W ∗) ∂W ∗ fd(W ∗) ∂W ∗ 
s + α =	 + 1 
fs(W ∗) ∂C fd(W ∗) ∂C 

∂W ∗ 

= ηd ∂W ∗ 

ηs + αηs + ηd 

∂C ∂C 
∂W ∗ αηs − ηd 

= − 
∂C ηs − ηd 

Similarly, 

∂Ld ∂W ∗ 

= fd(W ∗ ) + 1 
∂C ∂C 

L∗ ηsηd 

= (1 − α)
W ∗ ηs − ηd 

Intuitively, if α = 1 employees value health insurance as much as it costs to require it, so wages offset 
the cost one-for-one and total employment is unchanged. As α declines towards zero, the effect on wages 
diminishes while total employment begins to fall. At α = 0 such that employees do not value health 
insurance at all, wages fall by the least amount and employment declines by the largest amount. 

2.	 (6 points) Draw a graph of employment (x-axis) against wages (y-axis) with labor supply and labor demand 
curves before and after the mandated benefit regime. Give some intuition for how to interpret the graph. 
See Figure 5. A mandated shifts labor demand in by C vertically, reflecting the higher per-unit cost 
of employing labor. Labor supply also shifts vertically, but by less for α < 1, reflecting the employees’ 
willingness to receive a lower wage for some (partial) valuation of the benefit. The new equilibrium following 
the regime change consists of an unambiguously lower wage that is highest when α = 0 and weakly lower 
total employment that is unchanged when α = 1. 

3.	 (6 points) Describe how the effects of a payroll tax on wages and employment might differ from the effects 
of a mandated benefit. Would it matter whether the payroll tax collections were used to finance a public 
health insurance program? What if the public health insurance program had enrollment that was restricted 
to workers only? 
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Figure 5: Labor demand and supply before and after mandated benefits
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A payroll tax could differ from a mandated benefit because the revenues could potentially be used to fund 
programs the valued by employees and non-employees alike. If, say, the revenues were invested in a public 
health insurance for workers only, the effects could be similar to those of a mandated benefit provided that 
workers value public and employer-provided health insurance similarly. If both workers and non-workers 
could take part in public health insurance, the program would have no effect on labor supply because there 
would be no added benefit to working. 

4.	 (6 points) Read over the Gruber (1997) paper. He discusses three potential explanations for his results: 
inelastic labor supply, perfectly elastic labor demand, and full employee valuation of benefits. How might 
you distinguish between these three potential explanations? 
We could potentially disentangle these results by analyzing various payroll tax and benefit schemes in the 
same labor market. Suppose we could observe a payroll tax reform used to finance benefits with α plausibly 
equal to zero (or quite small). The effect of this reform on wages would provide us with a benchmark for 
ηd/(ηs − ηd), which we could use to rule out the edge case supply and demand explanations. 
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