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1. Wage Density Decomposition Methods 

This exercise is designed to give you some practice with decomposition methods discussed in class and recita
tion.1 Some of the data and code you’ll need can be found in a .zip file on the course website. Please hand in 
any additional code you write. As usual with empirical work, you’ll need to make some subjective decisions in 
applying these methods (e.g. price deflators, kernels, bandwidths, etc.). Please be sure to mention these in your 
responses. 

(a) [5 points] The data set men7988.dta contains information on male earnings in 1979 and 1988. Begin by 
plotting a kernel-based estimate of the density of log hourly wages in each of these years.2 Draw a line on 
your graph to denote the minimum wage level in each year. Your results should look similar to Figure 4a 
in DiNardo, Fortin, and Lemieux (1996). 
See Figure 1 and attached code. To match the DFL (1996) figure, I used a deflating factor of 0.63 for 1988 
wages and a gaussian kernel evaluated at 200 equal-width points with a bandwidth of 0.06. 

(b) [5 points] Group the data into cells of education and potential experience as follows: 
i. Education: high school dropout, high school graduate, some college, college or more 

ii. Potential experience: 0-9 years, 10-19 years, 20-29 years, 30+ years 

Let Xit denote a vector of 12 dummies for each education × experience cell, omitting the high school dropout 
category. Estimate quantile regressions of the form: 

Qln wit (τ |Xi) =ατ + Xit
� βt

τ 

βτfor each decile τ and each t ∈ {1979, 1988}. Plot your estimated i in two sets (one for each year) of four t 
graphs (one for each experience group), each with three series (one for each education group, relative to 
the omitted category) that consist of nine data points (one for each τ). Discuss your plots. 
See Figures 2a and 2b and attached code. Most of you chose to run a fully-saturated model for educa
tion/experience cells, so that’s what I did too. Returns to education are increasing in education in all 
experience cells and years. Returns are roughly constant at all quantiles of the residual wage distribution 
for workers with at least 10 years of experience, but are increasing for higher quantiles for workers with 
less experience. This could indicate that low-wage, low-experience workers have low-skill jobs for which 
additional schooling has little effect on productivity. Returns are similar across experience groups within 
years. As we compare across years, note how the y-axes differ. The 1988 estimates are always larger than 
the 1979 estimates, which is consistent with rising returns to education. In particular, the gap between 
the college and high school plots grows during this decade, especially among low-experience workers. 

(c) [7 points] Use the DFL re-weighting method to simulate the wage distribution that would have prevailed in 
1988 if the distribution of education and experience had not changed since 1979. Graph this counterfactual 
wage distribution along with the actual distribution from part (a). Interpret your results in light of your 

1Some of these questions are adopted from a replication exercise developed by Nicole Fortin, which can be found on her UBC website. 
2Be sure to think carefully about how you weight each observation. See the original DFL paper for guidance. 
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Figure 1: Kernel density estimates of real log wages

plots in part (b) and your knowledge of trends in educational attainment during this period. 
See Figure 3 and attached code. The counterfactual 1988 wage distribution lies somewhat to the left of the 
observed distribution. Since educational attainment is rising during this period, we would expect 1979’s 
work force to be paid less at 1988 prices than 1988’s labor force. 

(d) [6 points] Discuss the limitations of the quantile regression analysis in part (b) and explain why they 
motivate the development of unconditional quantile regression methods. 
We are interested in estimating the causal effect of education on the shape of the log wage distribution. 
As with any observational estimate of causal effects, we need to worry about omitted-variables bias, and 
would like to control for enough covariates such that education is plausibly as good as randomly assigned 
to workers conditional on these covariates. For average wages, we can model the conditional expectation 
as a linear function and interpret the coefficient(s) on education as saying something about the average 
unconditional effect of schooling (by the linearity of expectations). When we model conditional quantiles 
as a linear function of education and controls, however, the coefficients need not describe unconditional 
effects, since quantile functions are not linear in general. We thus turn to other methods that allow us to 
describe the unconditional effect of education while controlling for confounding variables, such as FFL. 

(e) [5 points] Install the Firpo, Fortin, and Lemieux (2009) RIF regression package rifreg.ado and use it to 
estimate the unconditional quantile effects from the model in part (b). Plot these estimates and compare 
them with the plots from part (b). 
See Figures 4a and 4b and attached code. The RIF regression coefficients are quite different than the 
quantile regression coefficients of Figures 2a and 2b, most strikingly in that they reveal very heterogeneous 
effects of increased educational attainment on lower vs. higher quantiles of the unconditional log wage 
distribution. For workers with less than 10 years of experience, the marginal impact of increased education 
is larger for lower quantiles, but that the opposite is true among workers with more experience. 

(f) [8 points] Use your density estimates from part (a) and the procedure outlined in recitation to manually 
construct RIF regression estimates of the effect of education on the unconditional deciles of the wage 
distribution in 1988. Compare these results to those you obtain from the canned rifreg command. Are 
these wage data well-suited for the FFL procedure? Why or why not? 
See Figure 5 and attached code. Manual RIF regression estimates that divide estimated effects of each 
education/experience group on the probability of exceeding a given decile by the estimated unconditional 
density of log wages at that decile are nearly identical to those obtained by the rifreg package in Figure 
4b. In general smoother distributions are better-suited for the FFL procedure, as distributional clumping 
may make the estimates more sensitive to the parameters of the kernel density estimation. Based on Figure 
1 the log wage distribution looks fairly smooth at most, though not all, quantiles. 
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Figure 2a: QR estimates of the effect of education on real log wages, 1979
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Figure 2b: QR estimates of the effect of education on real log wages, 1988
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Figure 3: Counterfactual kernel density estimate of real log wages, 1988
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Figure 4a: RIF estimates of the effect of education on real log wages, 1979

High school Some college College

0
.5

1
1.

5

0 .2 .4 .6 .8 1
Quantile

0−9 years experience
0

.2
.4

.6
.8

1

0 .2 .4 .6 .8 1
Quantile

10−19 years experience

.2
.4

.6
.8

1
1.

2

0 .2 .4 .6 .8 1
Quantile

20−29 years experience

.2
.4

.6
.8

1
1.

2

0 .2 .4 .6 .8 1
Quantile

30+ years experience

Figure 4b: RIF estimates of the effect of education on real log wages, 1988

High school Some college College

0
.5

1
1.

5

0 20 40 60 80 100
Quantile

0−9 years experience

0
.2

.4
.6

.8
1

0 20 40 60 80 100
Quantile

10−19 years experience

.2
.4

.6
.8

1
1.

2

0 20 40 60 80 100
Quantile

20−29 years experience

.2
.4

.6
.8

1
1.

2

0 20 40 60 80 100
Quantile

30+ years experience

Figure 5: Manual RIF estimates of the effect of education on real log wages, 1988
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2. Skill-biased Technical Change
 

Many have argued that recent technological advances (for example, computers) complement skilled labor, such 
that the rising demand for skill can be partly explained by a decline in these technologies prices. We’d like a 
model of skill-biased technical change with implications that we can test to check this story. 

Consider an economy in which aggregate manufacturing output is given by  
(Kθ + Lθ)1/θ

 α 
H1−αY =

for θ ≤ 1 and α ∈ (0, 1). Here H and L are the aggregate supply of high- and low-skilled labor, respectively, 
and K is the aggregate stock of machinery that automates certain manufacturing tasks. Assume H and L are 
supplied inelastically. K is supplied perfectly elastically at rental rate r. 

(a) [5 points] Write the first-order condition for K under perfect competition.
 
We have
 

∂Y = αKθ−1H1−α(Kθ + Lθ)(α−θ)/θ 

∂K 
Y Kθ 

= α 
K Kθ + Lθ 

= r 

(b) [8 points] Defining ω ≡ rK/αY as capital’s share of the K and L share of production, derive an expression 
for how ln K responds to changes in ln H and ln L. 
Note first that by the first-order condition: 

αY 
ω = r 
K 

Kθ 

=⇒ ω = 
Kθ + Lθ 

Taking logs of both sides of the FOC and differentiating gives 

α − θln r = α + (θ − 1) ln K + (1 − α) ln H + ln(Kθ + Lθ)
θ 

0 = (1 − α)d ln H + (θ − 1)d ln K + (α − θ)K
θd ln K + Lθd ln L 

Kθ + Lθ 

= (1 − α)d ln H + (θ − 1)d ln K + (α − θ) (ωd ln K + (1 − ω)d ln L) 

(1 − α) (θ − α)(1 − ω)
d ln K = (θ − α)ω + (1 − θ)d ln H − (θ − α)ω + (1 − θ)d ln L 

(c) [5 points] Under what condition is K increasing in H and decreasing in L? Provide some intuition for this 
result. 
In this model d ln K/d ln H > 0 and d ln K/d ln L < 0 if and only if θ > α. When L increases it raises the 
return to capital (as K and L are q-complements in the K and L aggregate), but lowers the return by 
decreasing the ratio of H to the K and L aggregate. When L and K are close substitutes (θ → 1) or the 
output share of H is large (α → 0) this second effect dominates and we have capital-skill complementarity. 

(d) [7 points] Now consider an alternative aggregate production function given by    ρ 1/ρ
(Hν + Lν )1/νY = Kρ +

for ρ, ν ≤ 1. What does this functional form imply about capital-skill substitution patterns that’s different 
from the model in (a)? How does K respond to changes in the relative supply of high skill labor (holding 
H + L fixed) when the skill wage premium is positive? 
Capital is skill-neutral in this model: the elasticity of substitution between K and the aggregate labor 
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supply Q is 1/(1 − ρ) and high- and low-skilled labor enter Q symmetrically. The new first-order condition 
for capital is 

r = Kρ−1(Kρ + Qρ)1/ρ−1 

When the skill wage premium is positive, a relative shift towards high-skilled labor will increase Q and 
thus increase K because of their q-complementarity. Conversely increases in L holding H + L fixed will 
decrease K. Thus, despite the skill-neutrality of this model, we have the same empirical predictions on the 
increased use of automation capital from skill mix shocks as we had in (c). 

(e) [7 points] How does the capital/output ratio W ≡ rK/Y respond to changes in the relative supply of high-
skilled labor in the model in (d)? What about in the model in (a)? How might we use this to test for 
skill-biased technical change? 
In the model in (d) we have 

r = Kρ−1(Kρ + (Hν + Lν )ρ/ν )1/ρ−1 

Y
Kρ Kρ + (Hν + Lν )ρ/ν −1 

= 
K 
Y ρ/(ρ−1)= r
K 

rK ρ/(ρ−1)=⇒ = r
Y 

so that the capital/output ratio is independent of relative skill supplies. However, in part (a) we have 

Y Kθ 

r = α 
K Kθ + Lθ 

rK Kθ 

= α 
Y Kθ + Lθ 

which clearly depends on the relative share of high-skill labor. We can thus differentiate between the 
two models (and by doing so test for skill-biased technical change) by looking at the effect of exogenous 
increases in the relative supply of low-skilled labor on the rate of adoption of the technology. 
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3. Liquidity-Constrained Job Search 

Consider a simplified discrete-time search model where jobs last indefinitely once found. Individuals have a 
subjective time discount rate of δ and flow utility of u(ct) − ψ(st) where ct denotes consumption in period t, st 

represents the individual’s search effort (normalized as the probability of finding a job) and u and ψ are strictly 
concave and convex, respectively. Agents are initially unemployed at t = 0 with assets A0. An agent who enters 
period t without a job first chooses st and learns whether or not she has become employed. If she has, she begins 
working in period t at the exogenous wage of wt and remains employed at all future periods. If she fails to find 
a job she receieves an unemployment benefit bt < wt and the problem repeats. Agents can save or borrow in each 
period at the fixed interest rate r, but are potentially constrained by a lower bound on assets L. 

(a) [5 points] Write the value function of assets At for an employed individual in recursive form.
 
Since an employed individual faces no risk of job loss, she sets st = 0. We thus have
   

At+1 1 
Vt(At) = max u At + wt − + (Vt+1(At+1) − ψ(0))

At+1≥L 1 + r 1 + δ 

This is the employed agent’s Bellman equation. 
(b) [6 points] Write the maximization problem characterizing optimal search for an individual entering period 

t with assets At and no job. Use this to write the value function for an individual who fails to find a job 
at the start of period t in recursive form. 
An unemployed agent solves 

maxstVt(At) + (1 − st)Ut(At) − ψ(st)
st 

where Ut(At) is the value function of an unemployed agent. The optimum of this problem is the expected 
value of entering period t without a job, so     

At+1 1 
Ut(At) = max u At + bt − + max st+1Vt+1(At+1) + (1 − st+1)Ut+1(At+1) − ψ(st+1)

At+1≥L 1 + r 1 + δ st+1 

is the unemployed agent’s Bellman equation. 
(c) [6 points] Derive and interpret the first-order condition of the optimal search problem. How is optimal 

search intensity affected by an exogenous increase in At (such as a windfall cash grant)? What does testing 
∂s∗/∂At = 0 tell us? t 
The first-order condition is 

∗ ψ (s ) = Vt(At) − Ut(At)t 

∗Intuitively, the agent chooses st such that the marginal cost of search effort ψ(s ) equals the marginal t 
benefit of search, in this case the difference in the (optimal) values of employment and unemployment. 

∗ ∗Invoking the implicit function theorem to write s = s (At) we have t t 

) 
∂s∗ 

∗ tψ (s = Vt (At) − Ut (At)t ∂At     
A∗e A∗u 

t+1 t+1= u At + wt − − u At + bt −1 + r 1 + r
e u∂s∗ u (c ) − u (c )t t t= ∗∂At ψ (s )t 

where A∗e
t+1 are the optimal choices of t+1 asset levels when the agent is employed and unemployed, t+1 and A∗u
 

e u
respectively, and c and c are the corresponding consumption levels in period t. By assumption ψ > 0t t 
e u e uand u > 0, so the sign of ∂s∗/∂At depends on whether c ' c . We know c ≥ c , since an unemployed t t t t t 

agent could always set st = 0 to recreate the employed agent’s problem but with bt < wt in place of wt and 
thus weakly lower consumption due to the asset constraint; increasing search can only decrease optimal 

e uconsumption further. If c = c (the agent is able to perfectly smooth consumption), optimal job search t t 
udoes not respond to cash grants. However if the unemployed agent is liquidity constrained, c < ce andt t 

∂s∗/∂At < 0. Thus testing whether agents decrease their job search in response to cash grants reveals the t 
degree to which they cannot intertemporally smooth their consumption. 
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(d) [7 points] How is optimal search intensity affected by an exogenous increase in the benefit level bt? By an 
exogenous increase in wages wt? Write an expression linking ∂s∗/∂At, ∂s∗/∂bt, and ∂s∗/∂wt and interpret. t t t 

∗Similar to (c), we can differentiate the first-order condition for s with respect to bt:t 

)∂s
∗ ∂Vt ∂Ut∗ tψ (s = −t ∂bt ∂bt ∂bt 

A∗u 
t+1= −u At + bt − 1 + r 

u∂s∗ −u (c )t t= < 0∗∂bt ψ (s )t 

and to wt: 

) 
∂s∗ ∂Vt ∂Ut∗ tψ (s = −t ∂wt ∂wt ∂wt 

A∗e 
t+1= u At + wt − 1 + r 

e∂s∗ u (c )t t= 
∂wt ψ (s ∗) 

> 0 
t 

Thus 

∂s∗ ∂s∗ ∂s∗ 
t t t= − 

∂bt ∂At ∂wt 

Intuitively, the decrease in search intensity due to an increase in unemployment benefits can be equated 
to the change in search intensity due to a pure wealth effect (∂s∗/∂At) and a substitution effect (∂s∗/∂wt)t t 
from a change in the price of leisure. The weath effect, if nonzero, reflects a welfare-improving response due 
to the correction of a market failure (liquidity constraints), while the substitution effect can be thought of 
as a moral hazard response due to the subsidization of unemployment. 

(e) [8 points] How is optimal search intensity affected by an exogenous increase in a future benefit level bt+j ? 
What does testing ∂s∗/∂bt+j = 0 tell us? t 
Now we have 

) 
∂s∗ ∂Vt ∂Ut∗ tψ (s = −t ∂bt+j ∂bt+j ∂bt+j 

uu (ct+j )∗ ∗ ∗ = −(1 − st+1)(1 − st+2)...(1 − st+j )(1 + δ)j 

u∂s∗ 
t ρt,j 

∗ u (ct+j )= − ∗∂bt+j (1 + δ)j ψ (s )t 

where ρ∗ is the probability that an individual is still unemployed in period t + j conditional on being t,j

unemployed in period t. As with current benefits, the effect of increasing future benefits on current search 
behavior is negative provided the agent is not completely myopic (that is, provided δ < ∞). Testing 
whether ∂s∗/∂bt+j = 0 is thus a test of myopic search behavior. t 
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