Discrimination and learning

Heidi L. Williams

MIT 14.662

Spring 2015

Williams (MIT 14.662)

Discrimination and learning

・ < 言 > 言 少 < ○ Spring 2015 1 / 50

(日)

Discrimination and learning

- Previous models of statistical discrimination were static
- In contrast, Altonji and Pierret (2001) use a dynamic model of employer learning to test for statistical discrimination
 - Theoretical model builds closely on Farber and Gibbons (1996)
- Coate and Loury (1993) use a dynamic model of worker investments to analyze affirmative action

Roadmap for today

- Preliminaries: Farber and Gibbons (1996)
- Testing statistical discrimination: Altonji and Pierret (2001)
- Affirmative action: Coate and Loury (1993)

< ∃ > <

1 Preliminaries: Farber and Gibbons (1996)

2 Testing statistical discrimination: Altonji and Pierret (2001)

3 Affirmative action: Coate and Loury (1993)

4 Looking ahead

→ Ξ →

Farber-Gibbons (1996)

- At the time of labor market entry:
 - Some characteristics (education) observed by employers, but likely convey only partial information about productivity
 - Over time: worker gains experience, more information revealed
- Key insight: the econometrician may observe variables measuring productivity that are *not* observed by employers
 - Example: AFQT scores
 - Can ask how employers learn about these over time
- Farber-Gibbons: implications of employer learning for wages
 - Influential framework
 - Tractable model
 - Empirically testable implications, generally supported by the data

・ 同 ト ・ ヨ ト ・ ヨ ト

Model: Set-up

- η_i : innate (time-invariant) ability
 - Not observed by employers nor by econometrician
- s_i: (time-invariant) schooling
 - Observed by employers and by econometrician
- X_i: (time-invariant) attributes other than schooling (race)
 - Observed by employers and by econometrician
- Z_i: (time-invariant) attributes (school quality)
 - Observed by employers; not observed by econometrician
- *B_i*: (time-invariant) attributes (AFQT)
 - Not observed by employers; observed by econometrician

Allow for arbitrary joint distribution $F(\eta_i, s_i, X_i, Z_i, B_i)$

< 回 > < 三 > < 三 >

Model: Set-up

- y_{it} : output of *i* in worker's t^{th} period in labor market
 - { $y_{it} : t = 1, ..., T$ }: independent draws from conditional distribution $G(y_{it}|\eta_i, s_i, X_i, Z_i)$
 - Note: B_i does not appear in this conditional distribution (assumes no direct effect on output; can affect output via other variables, like η_i)
- Assume:
 - **1** Employers know $F(\eta_i, s_i, X_i, Z_i, B_i)$ and $G(y_{it}|\eta_i, s_i, X_i, Z_i)$
 - 2 Employers observe s_i , X_i , and Z_i
 - Solution Employers observe outputs $\{y_{i1}, ..., y_{it}\}$ through period t
 - ★ Strong "public learning" assumption

• • = • • = •

Wage paid to a worker in period t is her expected output given all available information available at t about the worker:

$$w_{it} = E(y_{it}|s_i, X_i, Z_i, y_{i1}, ..., y_{it-1})$$

Spot-market model of wage determination

- Rules out long-term contracts; strong assumption
- Could be that long-term contracts are not useful, or that they are useful but impossible to enforce

Three predictions that can be tested in an earnings regression:

- Iffect of schooling on wages independent of experience
- Time-invariant worker characteristics correlated with ability but unobserved by employers increasingly correlated with wages as experience increases
- Wage residuals a martingale

• Consider a panel data set of one cohort of workers

- Data on s_i and X_i
- Data on wage in each year (t = 1, 2, ..., T)
- Can estimate the following earnings regression:

$$w_{it} = \alpha_t + \beta_t s_i + X_i \gamma_t + \varepsilon_{it}$$

Notes:

- Z_i by construction not included
- Specified in levels, not logs

Notation:

- $E^*(\cdot)$: linear projection
- $E(\cdot)$: conditional expectation

Estimated coefficients $(\hat{\alpha}_t, \hat{\beta}_t, \hat{\gamma}_t)$ are coefficients from linear projection $E^*(w_{it}|s_i, X_i)$ of w_{it} on s_i and X_i :

$$E^*(w_{it}|s_i, X_i) = \hat{\alpha}_t + \hat{\beta}_t s_i + X_i \hat{\gamma}_t$$

Recall:

 Version of law of iterated expectations: E*(E(y|x,z)|x) = E*(y|x) [see notes]

2
$$w_{it} = E(y_{it}|s_i, X_i, Z_i, y_{i1}, ..., y_{it-1})$$

$$E^*(w_{it}|s_i, X_i) = E^*(E(y_{it}|s_i, X_i, Z_i, y_{i1}, ..., y_{it-1})|s_i, X_i)$$

= $E^*(y_{it}|s_i, X_i)$

- Recall:
 - **1** s_i , X_i time-invariant
 - y_{it} independent and identically distributed draws
- $\Rightarrow E^*(y_{it}|s_i, X_i)$ is independent of t
- $\bullet \Rightarrow$ effect of schooling on wages is independent of experience

Some intuition:

- Recall:
 - Wages are assumed to equal expected output
 - Outputs are independent and identically distributed draws
- \Rightarrow w_{i1} is expectation of first period output given s_i and X_i
- No part of 'innovation' in wages between first, second periods (w_{i2} - w_{i1}) can be forecast from information determining w_{i1}
- \Rightarrow $w_{i2} = w_{i1}$ + term depending on y_{i1} but orthogonal to s_i , X_i
- \Rightarrow estimated coefficients on s_i and X_i are the same in the first and second and all subsequent periods

- Recall: B_i in data but not observed by employers
 - ► Note that other variables observable to employers (s_i, X_i, and Z_i) could be correlated with B_i
- Want to create a vector of variables orthogonal to employers' information when worker enters labor market
- B_i^* : residual from a regression of B_i on all the other variables in the data (s_i, X_i) and the worker's initial wage w_{i1}

$$B_i^* = B_i - E^* (B_i | s_i, X_i, w_{i1})$$

- Including w_{i1} conditions out employers' information about B_i
 - Caveat: measurement error in initial wage

< 回 ト < 三 ト < 三 ト

Now add B_i^* as a regressor to our wage equation:

$$w_{it} = \alpha_t + \beta_t s_i + X_i \gamma_t + B_i^* \pi_t + \varepsilon_{it}$$

The question here is how π_t will vary with experience

Specialize to case where B is a scalar

• B^* is by construction orthogonal to the other regressors

•
$$\Rightarrow \hat{\pi_t} = \frac{cov(B_i^*, w_{it})}{var(B_i^*)}$$

• We can then write:

$$w_{it} = w_{it-1} + \zeta_{it}$$
$$= w_{i1} + \sum_{\tau=2}^{t} \zeta_{i\tau}$$

where ζ_{it} is the innovation in wages in each period

 B_i^* is orthogonal to w_{i1} by construction $\Rightarrow \hat{\pi}_1 = 0$ and:

$$cov(B_i^*, w_{it}) = cov\left(B_i^*, w_{i1} + \sum_{\tau=2}^t \zeta_{i\tau}\right)$$
$$= cov(B_i^*, w_{i1}) + cov\left(B_i^*, \sum_{\tau=2}^t \zeta_{i\tau}\right)$$
$$= \sum_{\tau=2}^t cov(B_i^*, \zeta_{i\tau})$$

 $cov(B_i^*, w_{it})$ will "generally" be positive for every τ

- $\Rightarrow \hat{\pi_t}$ will increase with t
- \Rightarrow if B_i^* is correlated with ability, then the estimated effect of B_i^* on wages should increase with experience

Helpful to compare effect of characteristics market cannot observe (B_i^*) with effect of characteristics market can observe (s_i, X_i)

- By construction, former play no role in wage determination, but their estimated effect increases over time as the market learns about ability by observing output
- Latter play a declining role in the market's inference process but have a constant estimated effect

Key prediction of the model

Prediction #3: Wage residuals

- $E(\zeta_{it}|w_{it-1}) = 0 \Rightarrow$ wages are a martingale: $E(w_{it}|w_{it-1}) = w_{it-1}$
 - You may be thinking: what is a martingale?
 - Not the focus of Altonji-Pierret test, so see paper for details
- Fact that measured wage growth increases with experience implies wages *not* a martingale; empirics focus on related prediction that wage residuals (not wages) are a martingale

Theory: Time-variant worker characteristics

Model thus far ruled out productivity growth with experience

- Assume i^{th} worker's output in period t is $Y_{it} = y_{it} + h(t)$
 - y_{it}: part of output due to innate ability
 - h(t): part of output due to acquired skill
- Assume output grows with experience by h(t) (OJT)
 - h(t): deterministic, linear
- Write down new wage equation:

$$w_{it} = \alpha_0 + \alpha_1 t + \beta_0 s_i + \beta_1 s_i t + \varepsilon_{it}$$

Empirical analysis

NLSY data

- Panel data: wage dynamics for individuals
- Focus on younger workers
- Detailed experience measures
- AFQT score as a measure of B_i

Construct B_i^*

Many of the determinants of B_i are observable by the market, but we can condition out other observables and the first period wage in order to construct a measure B_i^* that is not observed by employers:

$$B_i^* = B_i - X_i \hat{\gamma} - \hat{\delta} w_{i0}$$

- w_{it} incorporates all information market has on worker's ability
- Caveat: wage may be measured with error ⇒ B^{*}_i term will not be completely purged of attributes observed by the market
- Farber and Gibbons focus on AFQT, library card at age 14 (latter is a proxy for family background)

- **A FER A FER**

Table 2 tests Farber and Gibbons' first and second predictions:

- The estimated effect of schooling on the level of wages should be independent of experience
- Time-invariant worker characteristics correlated with ability but unobserved by employers should be increasingly correlated with wages as experience increases

Table 2

- Column (1): reports the means and standard deviations
- Column (2): basic earnings regression
- Column (3): adds AFQT and library card residuals

Consistent with the model:

- No evidence that relationship between earnings and education varies with experience
- 2 Interactions of the AFQT residuals with experience are positive

Farber and Gibbons (1996): Table 2

REGRESSION ANALYSIS OF EARNINGS FUNCTION									
Independent variable	(1) Mean [sd]	(2) Wage (level)	(3) Wage (level)	(4) Wage (level)	(5) Wage (Level)	(6) Wage (log)			
Constant	1.0	-3.5579 (0.785)	-3.8086 (0.788)	-6.0321 (0.928)	-2.7034 (0.388)	0.0873 (0.124)			
Experience	5.1804 [2.502]	0.4428 (0.102)	0.5054 (0.103)	0.5366 (0.100)	0.2697 (0.069)	0.1012 (0.013)			
Experience squared	33.0953 [29.947]	-0.0178 (0.003)	-0.0185 (0.003)	-0.0178 (0.003)	-0.0198 (0.003)	-0.0027 (0.000)			
Education	13.0450 [2.349]	0.6745 (0.061)	0.6938 (0.061)	0.6719 (0.059)	0.4602 (0.024)	0.0989 (0.007)			
Education \times experience	67.5424 [35.014]	-0.0004 (0.008)	-0.0049 (0.008)	-0.0041 (0.007)	0.0172 (0.005)	-0.0026 (0.001)			
AFQT residual/100	0.0024	_	0.6494 (0.307)	0.8734 (0.291)	0.7841 (0.292)	0.1880 (0.044)			
AFQT resid/100 \times experience	0.0189 [0.856]	-	0.1938 (0.064)	0.1848 (0.060)	0.1922 (0.060)	(0.044) 0.0187 (0.008)			
Lib card residual/10	-0.0002 [0.043]	_	0.2583 (1.035)	0.2130 (0.988)	-0.0579 (0.989)	0.1440 (0.146)			
Lib card resid \times experience/10	-0.00011 [0.248]	_	0.6035 (0.205)	0.6169 (0.192)	0.6448 (0.192)	0.0588 (0.026)			
Year		yes	yes	yes	no	yes			
Education \times year		yes	yes	yes	no	yes			
Other demographic		no	no	yes	yes	yes			
R^2		0.215	0.224	0.294	0.289	0.296			

TABLE II Regression Analysis of Earnings Function

The dependent variable is real hearly earnings on the current job (in levels in columns (2)-(5) and in logs in columns (6). The means of the level of earnings in 5.05 (a.d. = 0.43). The former of the level of earnings in 5.05 (a.d. = 0.44). The tumbers in parentheses are WhiteHearly the standard errors composed accounting for the fact that there are multiple observations for each worker. There are 35.954 ways observations on 6.971 (advision). Where included, there are ten year dumnies for infibioal, there are the standard errors constanding of the dum of the standard errors constanding and the standard errors constantion of the standard errors and the standard errors constantis of the standard errors and t

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

<ロ> (日) (日) (日) (日) (日)

Farber and Gibbons also analyze model's third prediction: Wage residuals should be a martingale

Not critical to understanding the Altonji-Pierret tests; see paper

Preliminaries: Farber and Gibbons (1996)

2 Testing statistical discrimination: Altonji and Pierret (2001)

3 Affirmative action: Coate and Loury (1993)

4 Looking ahead

A E A

Overview of Altonji and Pierret (2001)

Do employers statistically discriminate among young workers on the basis of observable characteristics such as education and race, and as they learn over time do they rely less on such variables?

- Employer learning model as in Farber-Gibbons:
 - Information common across firms
 - Labor market is competitive
- Focus on variables such as race, which employers observe and could be correlated with AFQT scores
- Key idea: statistical discrimination with employer learning should imply coefficient on AFQT will rise with experience whereas (conditional on AFQT) coefficient on race will fall

Differences: Altonji-Pierret and Farber-Gibbons

Very similar models; key differences:

- Altonji-Pierret model specified in logs rather than levels
- ⁽²⁾ Whereas Farber-Gibbons orthogonalize B_i with respect to X_i and w_{i0} , Altonji-Pierret do *not* do this - they are interested in how changes in relationship between B_i and wages over time affects coefficients on X_i 's such as race and schooling

Proposition 1: Assume schooling *s* is correlated with the initially unobserved variable *z* (AFQT score). If we include *z* in the wage regression with a time-varying coefficient, then as employers learn about the productivity of workers the observable variable *s* (schooling) will get less of the credit for an association with productivity as *z* can claim the shifting credit.

Do employers statistically discriminate on education?

- Column (1): education, black, AFQT, educ-exp interaction
- Column (2): adds AFQT-experience interaction
 - ▶ Effect of AFQT rises from 0 (exp=0) to 0.0692 (exp=10)
 - Supports that employers learn about productivity over time
 - Coefficient on education-experience interaction declines: supports that employers statistically discriminate on education

Altonji and Pierret (2001): Table 1

TABLE I THE EFFECTS OF STANDARDERED AFQT AND SCHOOLING ON WAGES Dependent Variable: Log Wage; OLS estimates (standard errors).

Panel 1—Experience measure: potential experience							
Model:	(1)	(2)	(3)	(4)			
(a) Education	0.0586	0.0829	0.0638	0.0785			
	(0.0118)	(0.0150)	(0.0120)	(0.0153)			
(b) Black	-0.1565	-0.1553	0.0001	-0.0565			
	(0.0256)	(0.0256)	(0.0621)	(0.0723)			
(c) Standardized AFQT	0.0834	-0.0060	0.0831	0.0221			
	(0.0144)	(0.0360)	(0.0144)	(0.0421)			
(d) Education *	-0.0032	-0.0234	-0.0068	-0.0193			
experience/10	(0.0094)	(0.0123)	(0.0095)	(0.0127)			
(e) Standardized AFQT =		0.0752		0.0515			
experience/10		(0.0286)		(0.0343)			
(f) Black = experience/10			-0.1315	-0.0834			
			(0.0482)	(0.0581)			
R ²	0.2861	0.2870	0.2870	0.2873			

Panel 2—Experience measure: actual experience instrumented by potential experience							
Model:	(1)	(2)	(3)	(4)			
(a) Education	0.0836	0.1218	0.0969	0.1170			
	(0.0208)	(0.0243)	(0.0206)	(0.0248)			
(b) Black	-0.1310	-0.1306	0.0972	0.0178			
	(0.0261)	(0.0260)	(0.0851)	(0.1029)			
(c) Standardized AFQT	0.0925	-0.0361	0.0881	0.0062			
	(0.0143)	(0.0482)	(0.0143)	(0.0572)			
(d) Education +	-0.0539	-0.0952	-0.0665	-0.0689			
experience/10	(0.0235)	(0.0276)	(0.0234)	(0.0283)			
(e) Standardized AFQT =		0.1407		0.0913			
experience/10		(0.0514)		(0.0627)			
(f) Black * experience/10			-0.2670	-0.1739			
			(0.0968)	(0.1184)			
R^2	0.3056	0.3063	0.3061	0.3064			

Benellik, Remediation and an external supervision of instances and a

Experiments in module with a ratio physical Adaption started for pare effects, elevation interaction of while a while neutral like interaction with a solute interact. Note interaction that each interaction of the solution of the solu

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Williams (MIT 14.662)

Discrimination and learning

▶ ▲ 王 ▶ 王 ∽ ۹ ペ Spring 2015 33 / 50

<ロ> (日) (日) (日) (日) (日)

Do employers statistically discriminate on the basis of race?

- A statistically discriminating firm might use race along with education to predict the productivity of new workers
- With experience, the productivity of the worker would become more apparent, and compensation would be based on all of the information available rather than just the information at the time of hire
- Hence, if statistical discrimination based on race is important, then adding interactions between t and z variables should make the Black-experience interaction less negative

If firms do not use (or partially use) race as information...

• If race is negatively related to productivity, then the race gap should widen with experience and adding AFQT-experience interaction will reduce the race gap in experience slope

Do employers statistically discriminate on the basis of race?

- Race coefficients in Table 1 not consistent with statistical discrimination
 - Column (3): Black main effect becomes much less negative when Black-experience interaction is added
 - ★ Suggests there is either not much difference in the productivity of black and white men at the time of labor market entry, or that firms do not statistically discriminate much
 - Race gap rises sharply with experience
 - ▶ Together, inconsistent with statistical discrimination based on race
- Column (4): Adding AFQT-experience interaction decreases Black-experience interaction
 - Also inconsistent with statistical discrimination based on race
 - One interpretation: employers are obeying the law and not statistically discriminating based on race
 - Paper also discusses alternative explanations

< 回 > < 三 > < 三 >

Altonji and Pierret (2001): Table 1

TABLE I THE EFFECTS OF STANDARDIZED AFQT AND SCHOOLING ON WAGES Dependent Variable: Log Wage; OLS estimates (standard errors).

Panel 1—Experience measure: potential experience						
Model:	(1)	(2)	(3)	(4)		
(a) Education	0.0586	0.0829	0.0638	0.0785		
	(0.0118)	(0.0150)	(0.0120)	(0.0153)		
(b) Black	-0.1565	-0.1553	0.0001	-0.0565		
	(0.0256)	(0.0256)	(0.0621)	(0.0723)		
(c) Standardized AFQT	0.0834	-0.0060	0.0831	0.0221		
	(0.0144)	(0.0360)	(0.0144)	(0.0421)		
(d) Education * experience/10	-0.0032	-0.0234	-0.0068	-0.0193		
	(0.0094)	(0.0123)	(0.0095)	(0.0127)		
(e) Standardized AFQT =		0.0752		0.0515		
experience/10		(0.0286)		(0.0343)		
(f) Black * experience/10			-0.1315	-0.0834		
			(0.0482)	(0.0581)		
R ²	0.2861	0.2870	0.2870	0.2873		

Panel 2—Experience measure: actual experience instrumented by potential experience						
Model:	(1)	(2)	(3)	(4)		
(a) Education	0.0836	0.1218	0.0969	0.1170		
	(0.0208)	(0.0243)	(0.0206)	(0.0248)		
(b) Black	-0.1310	-0.1306	0.0972	0.0178		
	(0.0261)	(0.0260)	(0.0851)	(0.1029)		
(c) Standardized AFQT	0.0925	-0.0361	0.0881	0.0062		
	(0.0143)	(0.0482)	(0.0143)	(0.0572)		
(d) Education +	-0.0539	-0.0952	-0.0665	-0.0689		
experience/10	(0.0235)	(0.0276)	(0.0234)	(0.0283)		
(e) Standardized AFQT =		0.1407		0.0913		
experience/10		(0.0514)		(0.0627)		
(f) Black * experience/10			-0.2670	-0.1739		
			(0.0968)	(0.1184)		
R^2	0.3056	0.3063	0.3061	0.3064		

Panel 9.—Experience measures actual experience instrumented

Experiments in module with a ratio physical Adaption started for pare effects, elevation interaction of while a while neutral Hink interaction with a soluti interaction. Alter interacted the solution interaction of the solution of th

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Williams (MIT 14.662)

Discrimination and learning

Spring 2015 37 / 50

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 Testing statistical discrimination: Altonji and Pierret (2001)

3 Affirmative action: Coate and Loury (1993)

A (10) F (10)

Overview

• Fryer-Loury (2005): recent overview of affirmative action

- "Regulations on the allocation of scarce positions in education, employment, or business contracting so as to increase the representation in those positions of people belonging to certain population subgroups"
- Holzer-Neumark (2000)
 - ► Table 1: key executive orders, regulations, and court decisions regarding affirmative action in the labor market
 - Reviews empirical studies of affirmative action policies

(Selected) Empirics

- Leonard (1984) on Executive Order no. 11246 in 1965
- Chay (1998) on Equal Employment Opportunity Act of 1972
- McCrary (2007) on a series of court-ordered racial hiring quotas in municipal police departments

Affirmative action has been controversial

One key question: can labor market gains from affirmative action policies continue without these policies becoming a permanent fixture in the labor market?

Coate and Loury (1993): how do affirmative action policies impact employers' stereotypes about capabilities of minority workers?

- Break down negative stereotypes: could \Rightarrow permanent gains
- Negative views about minority group are not eroded or are worsened: policy would need to be maintained permanently

Model set-up

- Assume large number of identical employers
- Assume large population of workers, randomly matched
- Workers \in [*B*, *W*], where share λ is *W*

Employers

- Assign workers to job 0 or job 1
- All workers can perform satisfactorily job 0
- Workers differ in qualification for job 1
- Workers earn ω on task 1, 0 on task 0
- Employers earn:
 - $x_q > 0$ for qualified worker on task 1
 - $-x_u < 0$ for unqualified worker on task 1
 - 0 for worker on task 0 (normalization)

Employers

Employers don't observe qualification prior to assignment

- Observe worker identity $\in [B, W]$
- Observe noisy signal $heta \in [0,1]$ of worker's qualification (test)
- Distribution of θ depends on qualification, but not group
- $F_q(\theta)$: probability signal does not exceed θ given qualified
- $F_u(\theta)$: probability signal does not exceed θ given unqualified
- $f_q(\theta)$, $f_u(\theta)$: density functions
- $\varphi = \frac{f_u(\theta)}{f_q(\theta)}$: likelihood ratio at θ
- Assume that $\varphi\left(\cdot\right)$ is non-increasing on $\theta\in\left[0,1\right]$
 - Implies $F_q(\theta) \leq F_u(\theta)$ for all θ
 - Distribution of the signal for qualified workers first-order stochastically dominates distribution for unqualified workers

Employers

- Employers' assignment policies: thresholds for each group
- Workers are qualified to perform task 1 only if they have made some costly *ex ante* investment
 - c: worker's investment cost
 - G(c): fraction of workers with cost $\leq c$
 - Cost distributions equal across groups

Equilibrium

- Equilibrium is a set of employer beliefs (about workers' qualifications in each group W and B) and workers' investments that are self-confirming
- Discriminatory equilibrium is one in which employers believe that workers from one group are less likely to be qualified

Affirmative action

- Consider an affirmative action policy that mandates that group assignments to task 1 are made at equal rates
- Ask whether introduction of such a constraint is sufficient to induce employers - in the resulting equilibrium - to believe that workers' productivities are uncorrelated with their group identity

Coate and Loury conclude by saying their results give "credence to both the hopes of advocates...and the concerns of critics." There are circumstances under which affirmative action will eliminate negative stereotypes, but equally plausible circumstances under which it fail to do so or even worse stereotypes.

More empirical work on these issues would be useful

Preliminaries: Farber and Gibbons (1996)

2 Testing statistical discrimination: Altonji and Pierret (2001)

3 Affirmative action: Coate and Loury (1993)

.

Looking ahead

Rent-sharing

イロト イ団ト イヨト イヨト

MIT OpenCourseWare http://ocw.mit.edu

14.662 Labor Economics II Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.