14.662 Recitation 1

DFL, MM, FFL, and a quick Mundlak

Peter Hull

Spring 2015

Part 1: Review: DiNardo, Fortin, and Lemieux (1996)

Why All the Fancy New 'Metrics?

- Growing interest in the *distribution* of wages
- Would like to link distributional features of Y_i to other factors, X_i
 - As a descriptive task (e.g. "how much of the 90th-10th percentile gap in wages can we explain by differences in education?")
 - To answer causal questions (e.g. "what would happen to the 10th percentile of earnings if we made community college free?")
- OLS/IV are all about *means;* to say something about other distributional features, we have to learn some new skills
- In some cases (e.g. "conditional" v. "unconditional" quantile regression), we have to face issues that OLS inherently sidesteps

DFL '96 Overview

- DFL extend the Oaxaca-Blinder mean-decomposition intuition to decompose wage distributions
- Basic idea: write

$$f(w;t_w,t_z) = \int_z f(w|z,t_w,t_z) dF(z|t_w,t_z)$$

where w = wage, z = individual attributes, $t_v =$ "time" (parameterizes distribution of v)

• Assume $f(w|z, t_w, t_z) = f(w|z, t_w), \ dF(z|t_w, t_z) = dF(z|t_z)$:

$$f(w; t_w = t, t_z = t') = \int_z f(w|z, t_w = t) dF(z|t_z = t')$$

= $\int_z f(w|z, t_w = t) \psi(z; t', t) dF(z|t_z = t)$

where $\psi(z;t',t) \equiv dF(z|t_z=t')/dF(z|t_z=t)$

DFL '96 Results

- ψ(z; t', t) a "reweighting" that gives a "counterfactual" distribution of wages when t' ≠ t (like O-B)
 - Once you estimate $\psi(z; t', t)$, you can estimate (by KDE) "the density [of wages] that would have prevailed if individual attributes had remained at their 1979 level and workers had been paid according to the wage schedule observed in 1988"
- By Bayes' rule:

$$\psi(z;t',t) \equiv \frac{P(z|t')}{P(z|t)} = \frac{P(t'|z) \cdot P(z)/P(t')}{P(t|z) \cdot P(z)/P(t)} = \frac{P(t'|z)}{P(t|z)} \frac{P(t)}{P(t')}$$

and it's easy to estimate these pieces (DFL use probit)

- DFL show this decomposition, while also accounting for changes in unionization rates and the min. wage (see notes for details). Find a lot of residual difference between 1979 and 1988 wage distribution
 - Reminder #1: decomposition order matters (as with O-B)
 - Reminder #2: partial equilibrium exercise (by assumption)

Part 2: Quantile Methods

Conditional QR: a Review

• The quantile function Q_Y is defined as the inverse of a CDF:

$$Q_Y(\tau|X_i) = y \iff F_Y(y|X_i) = \tau$$

It is thus invariant to monotone transformations $T(\cdot)$:

$$Q_Y(\tau|X_i) = y \implies P(Y_i \le y|X_i) = \tau \implies$$
$$P(T(Y_i) \le T(y)|X_i) = \tau \implies Q_{T(Y)}(\tau|X_i) = T(Q_Y(\tau|X_i)) = T(y)$$

• Conditional QR models $Q_Y(\tau|X_i)$ as a linear function of X_i :

$$Q_Y(\tau|X_i) = X_i'\beta_\tau$$

• This implies (can verify by writing out integrals and taking FOC):

$$egin{split} eta_{ au} = rg\min_{b} E\left[
ho_{ au}(Y-X_{i}^{\prime}b)
ight.\
ho_{ au}(arepsilon) \equiv egin{cases} auarepsilon, & arepsilon\geq 0\ (1- au)arepsilonarepsilon, & arepsilon< 0 \end{split}$$

Interpreting Conditional QR

• A linear $Q_Y(\tau|X_i)$ is consistent with a *location-scale* model:

$$Y_i = X'_i \alpha + X'_i \delta \varepsilon_i, \ \varepsilon_i \perp X_i$$

Since Y_i is monotone in ε_i conditional on X_i :

$$Q_{Y}(\tau|X_{i}) = X'_{i}\alpha + X'_{i}\delta Q_{\varepsilon}(\tau|X_{i})$$
$$= X'_{i}\alpha + X'_{i}\delta Q_{\varepsilon}(\tau) = X'_{i}\beta_{\tau}$$

- β_{τ} is the effect of X_i on the τ^{th} quantile of Y (not the effect on the τ^{th} quantile individual)
- If X_i is multidimensional, β_{τ,1} is the effect of X_{i,1} on the τth quantile of Y, conditional on X_{i,2}...X_{i,k}

• Ex: $X_i = \begin{bmatrix} D_i & W_i' \end{bmatrix}'$ for D_i binary: $eta_{ au,1} =$ quantile treatment effect

Why is QR "Conditional" when OLS is not?

- Suppose $Y_i = \beta D_i + W'_i \gamma + (1 + D_i) \varepsilon_i$ with $\varepsilon_i \perp D_i, W_i$ \implies Both $E[Y|D_i, W_i]$ and $Q_Y(\tau|D_i, W_i)$ are linear
- Both QR and OLS give the *conditional* effect of D_i on Y_i : $E[Y_{1i}|W_i] - E[Y_{0i}|W_i] = \beta + W'_i \gamma + E[2\varepsilon_i] - (W'_i y + E[\varepsilon_i])$ $= \beta$ $Q_{Y_1}(\tau|W_i) - Q_{Y_0}(\tau|W_i) = \beta + W'_i \gamma + 2Q_{\varepsilon}(\tau) - (W'_i \gamma + Q_{\varepsilon}(\tau))$ $= \beta + Q_{\varepsilon}(\tau)$
- But not necessarily the unconditional effect:

$$E[Y_{1i}] - E[Y_{0i}] = \beta + E[W'_i\gamma] + E[2\varepsilon_i] - (E[W'_i\gamma] + E[\varepsilon_i])$$

= β
$$Q_{Y_1}(\tau) - Q_{Y_0}(\tau) = \beta + Q_{W'\gamma+2\varepsilon}(\tau) - Q_{W'\gamma+\varepsilon}(\tau)$$

 $\neq \beta + Q_{W'\gamma}(\tau) + 2Q_{\varepsilon}(\tau) - (Q_{W'\gamma}(\tau) + Q_{\varepsilon}(\tau))$

"Unconditioning" QR: Machado and Mata (2005)

Skorohod representation: $Y_i = Q_Y(\theta_i | X_i)$ for $\theta_i | X_i \sim U(0,1)$, because

$$egin{aligned} & heta_i = F_Y(Y_i|X_i) \implies heta_i|X_i \sim U(0,1) \ Q_Y(heta_i|X_i) = Q_Y(F_Y(Y_i|X_i)|X_i) = Y_i \end{aligned}$$

M&M Marginalizing Method:

∀w ∈ supp(W_i), draw θ_i, simulate (Ŷ_{1wi}, Ŷ_{0wi}) with Q̂_Y(θ_i|D_i, W_i)
Average up (Ŷ_{1wi}, Ŷ_{0wi}) by f̂_W(w)
Compute Q̂_{Y1}(τ) − Q̂_{Y0}(τ)
Simple, right?

...not really.

- Computationally demanding (especially if you bootstrap SEs!)
- Can be quite sensitive to linear approximation of $Q_Y(\theta_i | D_i, W_i)$
- Curse of dimensionality: $\hat{f}_W(w)$ can be poorly estimated

"RIF-ing" QR: Firpo, Fortin, and Lemieux (2009)

Graphical intuition:

Unconditional effect on the τ^{th} quantile:

$$Q_{Y_1}(\tau) - Q_{Y_0}(\tau) \approx \frac{F_{Y_0}(Q_{Y_0}(\tau)) - F_{Y_1}(Q_{Y_0}(\tau))}{f_{Y_0}(Q_{Y_0}(\tau))}$$

10/19

Influence Functions: A Quick Overview

Q: "What happens to statistic $T_X(F)$ if I peturb F by adding mass at x"? A:

$$IF(x; T_X, F) = \lim_{\varepsilon \to 0} \frac{T_X((1-\varepsilon)F + \varepsilon \delta_x) - T_X(F)}{\varepsilon}$$

• Ex. 1:
$$T_X(F) = E_{X \sim F}[X_i]$$
:

$$IF(x; T_X, F) = \lim_{\varepsilon \to 0} \frac{E_{X \sim (1-\varepsilon)F + \varepsilon \delta_x}[X_i] - E_{X \sim F}[X_i]}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{(1-\varepsilon)E_{X \sim F}[X_i] + \varepsilon E_{X \sim \delta_x}[X_i] - E_{X \sim F}[X_i]}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{-\varepsilon E_{X \sim F}[X_i] + \varepsilon E_{X \sim \delta_x}[X_i]}{\varepsilon} = x - \mu_X$$

• Ex. 2: $T_Y(F) = Q_{Y;F}(\tau)$: $IF(y; T_Y, F) = \frac{\tau - \mathbf{1}\{y \le Q_{Y;F}(\tau)\}}{f_Y(Q_{Y;F}(\tau))}$

Recentered Influence Functions

FFL define:

$$RIF(y; Q_{Y;F}(\tau), F_Y) = Q_{Y;F}(\tau) + \frac{\tau - \mathbf{1}\{y \le Q_{Y;F}(\tau)\}}{f_Y(Q_{Y;F}(\tau))}$$

• Note the expectation of $RIF(x; T_X, F)$ is just $T_X(F)$:

$$E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)] = Q_{Y;F}(\tau) + \frac{\tau - E[\mathbf{1}\{Y_i \le Q_{Y;F}(\tau)\}]}{f_Y(Q_{Y;F}(\tau))}$$
$$= Q_{Y;F}(\tau) + \frac{\tau - \tau}{f_Y(Q_{Y;F}(\tau))} = Q_{Y;F}(\tau)$$

- So if $E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i] = X'_i\beta$, $Q_{Y;F}(\tau) = E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)]$ $= E[E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i]]$ $= E[X'_i]\beta$
- Coefficients of a conditional RIF also describe unconditional quantiles

Identifying RIFs

$$E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i] = Q_{Y;F}(\tau) + \frac{\tau - E[\mathbf{1}\{Y_i \le Q_{Y;F}(\tau)\}|X_i]}{f_Y(Q_{Y;F}(\tau))}$$
$$= Q_{Y;F}(\tau) + \frac{\tau - (1 - P(Y_i > Q_{Y;F}(\tau)|X_i))}{f_Y(Q_{Y;F}(\tau))}$$
$$= c_\tau + \frac{P(Y_i > Q_{Y;F}(\tau)|X_i)}{f_Y(Q_{Y;F}(\tau))}$$

If $E[RIF(Y_i; Q_{Y;F}(\tau), F_Y)|X_i] = X'_i\beta$,

$$c_{\tau} + \frac{P(Y_i > Q_{Y;F}(\tau)|X_i)}{f_Y(Q_{Y;F}(\tau))} = X'_i\beta$$
$$\implies E[T_i|X_i] = -a_{\tau} + f_Y(Q_{Y;F}(\tau))X'_i\beta$$

where $T_i = \mathbf{1}\{Y_i > Q_{Y;F}(\tau)\}$

Estimating RIFs

$$E[T_i|X_i] = -c_{\tau} + f_Y(Q_{Y;F}(\tau))X'_i\beta$$

So

$$T_{i} = -c_{\tau} + f_{Y}(Q_{Y;F}(\tau))X'_{i}\beta + \varepsilon_{i}$$

where $E[\varepsilon_{i}|X_{i}] = 0$

A regression!

Estimate (best linear approximation to the) RIF by:

- Regressing $T_i = \mathbf{1}\{Y_i > Q_{Y;F}(\tau)\}$ on X_i
- **2** Dividing $\hat{\beta}$ by $\hat{f}_{Y}(Q_{Y;F}(\tau))$
- That's it!

RIF Limitations

- RIF approximation depends crucially on the estimated $\widehat{f_Y}(Q_{Y;F}(\tau))$
- RIF inherently marginal: influence f'n describes small changes in X_i
 - MM '05: "What is the avg. difference in quantiles of Y_{1i} and Y_{0i} ?" (see also Chernozhukov et al. 2009)
 - FFL '09: "What is the avg. effect on the quantile of Y_i if we were to randomly switch one individual from $D_i = 0$ to $D_i = 1$?"
- As with all decomposition methods, RIFs reflect a "partial equilibrium": changes in *D_i* holding *W_i* fixed
- ...but at least it can describe the unconditional distribution!

Bonus: Mundlak as OVB

The Mundlak Decomposition

As David showed in class, the fixed-effects regression

$$Y_{ij} = \alpha + r^I S_{ij} + \mu_j + \varepsilon_{ij}$$

implies a decomposition of the coefficient from regressing Y_{ij} on S_{ij} :

$$r^{s} = r' + \lambda b$$

where

$$\lambda = rac{Cov(\mu_j, ar{S}_j)}{Var(ar{S}_j)}$$

 $b = rac{Cov(ar{S}_j, S_{ij})}{Var(S_i)}$

We can think of λ as the return to mean establishment schooling and *b* as the association between worker and establishment schooling

Mundlak as OVB

We can derive this decomposition from the classical omitted variables bias formula:

Define

$$ilde{S}_{ij} = S_{ij} - ar{S}_j$$

which is the "within establishment" variation in S_{ij} (i.e. the residual from regressing S_{ij} on establishment FEs. By construction

$$Cov(\bar{S}_j, S_{ij}) = Cov(\bar{S}_j, \bar{S}_j + \tilde{S}_{ij})$$

= $Var(\bar{S}_j)$

Mundlak as OVB (cont.)

Therefore,

$$r^{s} = r^{l} + \frac{Cov(\mu_{j}, \bar{S}_{j} + \tilde{S}_{ij})}{Var(\bar{S}_{j} + \tilde{S}_{ij})} = r^{l} + \frac{Cov(\mu_{j}, \bar{S}_{j} + \tilde{S}_{ij})}{Var(\bar{S}_{j})} \frac{Var(\bar{S}_{j})}{Var(\bar{S}_{j} + \tilde{S}_{ij})}$$
$$= r^{l} + \frac{Cov(\mu_{j}, \bar{S}_{j})}{Var(\bar{S}_{j})} \frac{Cov(\bar{S}_{j}, S_{ij})}{Var(\bar{S}_{j})}$$

since $Cov(\mu_j, \tilde{S}_{ij}) = 0$, also by construction. This is Mundlak. We can also use OVB intuition to estimate this decomposition; note that

$$r^{s} = r^{l} + \lambda rac{\textit{Cov}(ar{S}_{j}, S_{ij})}{\textit{Var}(S_{i})}$$

is the OVB formula for the "long" regression of

$$Y_{ij} = \alpha' + r'S_{ij} + \lambda \, \bar{S}_j + \varepsilon_{ij}'$$

which we can run to estimate λ (and then solve for *b*)!

14.662 Labor Economics II Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.