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Part 1: Review: DiNardo, Fortin, and Lemieux (1996)  



Part 1: DiNardo, Fortin, and Lemieux (1996) Motivation 

Why All the Fancy New ’Metrics?  

Growing interest in the distribution of wages 

Would like to link distributional features of Yi to other factors, Xi 

As a descriptive task (e.g. “how much of the 90th-10th percentile gap 
in wages can we explain by differences in education?”) 
To answer causal questions (e.g. “what would happen to the 10th 

percentile of earnings if we made community college free?”) 

OLS/IV are all about means; to say something about other  
distributional features, we have to learn some new skills  

In some cases (e.g. “conditional” v. “unconditional” quantile 
regression), we have to face issues that OLS inherently sidesteps 

2/19 



Part 1: DiNardo, Fortin, and Lemieux (1996) DiNardo, Fortin, and Lemieux (1996) 

DFL ’96 Overview  

DFL extend the Oaxaca-Blinder mean-decomposition intuition to 
decompose wage distributions 

Basic idea: write  
f (w ; tw , tz ) = f (w |z , tw , tz )dF (z |tw , tz ) 

z 

where w = wage, z = individual attributes, tv = “time” 
(parameterizes distribution of v) 

Assume f (w |z , tw , tz ) = f (w |z , tw ), dF (z |tw , tz ) = dF (z |tz ):  
f (w ; tw = t, tz = t ') = f (w |z , tw = t)dF (z |tz = t ')  

z  
= f (w |z , tw = t)ψ(z ; t ', t)dF (z |tz = t) 

z 

where ψ(z ; t ', t) ≡ dF (z |tz = t ')/dF (z |tz = t) 
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Part 1: DiNardo, Fortin, and Lemieux (1996) DiNardo, Fortin, and Lemieux (1996) 

DFL ’96 Results  
'ψ(z ; t , t) a “reweighting” that gives a “counterfactual” distribution 

'of wages when t  = t (like O-B) 
'Once you estimate ψ(z ; t , t), you can estimate (by KDE) “the density 

[of wages] that would have prevailed if individual attributes had 
remained at their 1979 level and workers had been paid according to 
the wage schedule observed in 1988” 

By Bayes’ rule: 
P(z |t ' ) P(t '|z) · P(z)/P(t ' ) P(t '|z) P(t)'

ψ(z ; t , t) ≡ = = P(z |t) P(t|z) · P(z)/P(t) P(t|z) P(t ' ) 
and it’s easy to estimate these pieces (DFL use probit) 

DFL show this decomposition, while also accounting for changes in 
unionization rates and the min. wage (see notes for details). Find a 
lot of residual difference between 1979 and 1988 wage distribution 

Reminder #1: decomposition order matters (as with O-B) 
Reminder #2: partial equilibrium exercise (by assumption) 
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Part 2: Quantile Methods Conditional Quantile Regression 

Conditional QR: a Review 

The quantile function QY is defined as the inverse of a CDF: 

QY (τ|Xi ) = y ⇐⇒ FY (y |Xi ) = τ 

It is thus invariant to monotone transformations T (·): 
QY (τ|Xi ) = y =⇒ P(Yi ≤ y |Xi ) = τ =⇒ 

P(T (Yi ) ≤ T (y)|Xi ) = τ =⇒ QT (Y )(τ|Xi ) = T (QY (τ|Xi )) = T (y) 

Conditional QR models QY (τ|Xi ) as a linear function of Xi : 
'QY (τ|Xi ) =Xi βτ 

This implies (can verify by writing out integrals and taking FOC):   '
βτ =argminE ρτ (Y − Xi b)b 

τε, ε ≥ 0
ρτ (ε) ≡

(1 − τ)|ε|, ε < 0 
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Part 2: Quantile Methods Conditional Quantile Regression 

Interpreting Conditional QR  

A linear QY (τ|Xi ) is consistent with a location-scale model: 

' 'Yi = Xi α + Xi δεi , εi ⊥⊥ Xi 

Since Yi is monotone in εi conditional on Xi : 

' 'QY (τ|Xi ) = Xi α + Xi δ Qε (τ|Xi ) 
' ' ' = Xi α + Xi δ Qε (τ) = Xi βτ 

βτ is the effect of Xi on the τth quantile of Y (not the effect on the 
τth quantile individual) 
If Xi is multidimensional, βτ,1 is the effect of Xi ,1 on the τth quantile 
of Y , conditional on Xi ,2 . . .Xi ,k 

' 'Ex: Xi = Di Wi for Di binary: βτ,1 = quantile treatment effect 
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Part 2: Quantile Methods Conditional Quantile Regression 

Why is QR “Conditional” when OLS is not? 
'Suppose Yi = β Di + Wi γ +(1 + Di )εi with εi ⊥⊥ Di ,Wi  

=⇒ Both E [Y |Di ,Wi ] and QY (τ|Di ,Wi ) are linear  

Both QR and OLS give the conditional effect of Di on Yi :   ' 'E [Y1i |Wi ] − E [Y0i |Wi ] = β + Wi γ + E [2εi ] − Wi y + E [εi ]

= β   ' 'QY1 (τ|Wi ) − QY0 (τ|Wi ) = β + Wi γ + 2Qε (τ) − Wi γ + Qε (τ)

= β + Qε (τ) 

But not necessarily the unconditional effect:   ' 'E [Y1i ] − E [Y0i ] =β + E [Wi γ]+ E [2εi ] − E [Wi γ]+ E [εi ]

= β 
QY1 (τ) − QY0 (τ) =β + QW 'γ+2ε (τ) − QW 'γ+ε (τ)  

=β + QW 'γ (τ)+ 2Qε (τ) − QW 'γ (τ)+ Qε (τ)
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Part 2: Quantile Methods Machado and Mata (2005) 

“Unconditioning” QR: Machado and Mata (2005) 
Skorohod representation: Yi = QY (θi |Xi ) for θi |Xi ∼ U(0,1), because 

θi = FY (Yi |Xi ) =⇒ θi |Xi ∼ U(0,1) 
QY (θi |Xi ) = QY (FY (Yi |Xi )|Xi ) = Yi 

M&M Marginalizing Method:   
1 Y Y∀w ∈ supp(Wi ), draw θi , simulate Y1wi ,Y0wi with QQY (θi |Di ,Wi )   
2 Y YAverage up Y1wi ,Y0wi by fQW (w) 

3 Compute Y QY0 (τ)QY1 (τ) − Y
Simple, right? 

...not really. 
Computationally demanding (especially if you bootstrap SEs!) 
Can be quite sensitive to linear approximation of QY (θi |Di ,Wi ) 
Curse of dimensionality: ffW (w) can be poorly estimated 
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009)

“RIF-ing” QR: Firpo, Fortin, and Lemieux (2009)
Graphical intuition:

Unconditional effect on the τth quantile:
FQ Q Y0(QY0(τ))

Y1(τ)− Y0(τ)
−FY≈ 1(QY0(τ))

fY0(QY0(τ))
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009) 

Influence Functions: A Quick Overview 

Q: “What happens to statistic TX (F ) if I peturb F by adding mass at x”? 
A: 

TX ((1 − ε)F + εδx ) − TX (F )IF (x ;TX ,F ) = lim 
ε→0 ε 

Ex. 1: TX (F ) = EX∼F [Xi ]:
EX∼(1−ε)F +εδx [Xi ] − EX ∼F [Xi ]IF (x ;TX ,F ) = lim 

ε→0 ε 
(1 − ε)EX ∼F [Xi ]+ εEX∼δx [Xi ] − EX ∼F [Xi ]

= lim 
ε→0 ε 

−εEX ∼F [Xi ]+ εEX ∼δx [Xi ]
= lim = x − µX

ε→0 ε 
Ex. 2: TY (F ) = QY ;F (τ):  

τ − 1{y ≤ QY ;F (τ)}IF (y ;TY ,F ) = fY (QY ;F (τ))
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009) 

Recentered Influence Functions 

FFL define: 
τ − 1{y ≤ QY ;F (τ)}RIF (y ;QY ;F (τ),FY ) = QY ;F (τ)+ fY (QY ;F (τ)) 

Note the expectation of RIF (x ;TX ,F ) is just TX (F ): 
τ − E [1{Yi ≤ QY ;F (τ)}]E [RIF (Yi ; QY ;F (τ),FY )] = QY ;F (τ)+ fY (QY ;F (τ)) 

τ − τ
= QY ;F (τ)+ = QY ;F (τ)fY (QY ;F (τ)) 

'So if E [RIF (Yi ;QY ;F (τ),FY )|Xi ] = Xi β ,
QY ;F (τ) = E [RIF (Yi ;QY ;F (τ),FY )] 

= E [E [RIF (Yi ;QY ;F (τ),FY )|Xi ]]
' = E [Xi ]β 

Coefficients of a conditional RIF also describe unconditional quantiles 
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009) 

Identifying RIFs 

τ − E [1{Yi ≤ QY ;F (τ)}|Xi ]E [RIF (Yi ;QY ;F (τ),FY )|Xi ] = QY ;F (τ)+ fY (QY ;F (τ)) 
τ − (1 − P (Yi > QY ;F (τ)|Xi ))

= QY ;F (τ)+ fY (QY ;F (τ)) 
P (Yi > QY ;F (τ)|Xi )

= cτ + fY (QY ;F (τ))

'If E [RIF (Yi ;QY ;F (τ),FY )|Xi ] = Xi β ,

P (Yi > QY ;F (τ)|Xi ) ' cτ + = Xi βfY (QY ;F (τ)) 
' =⇒ E [Ti |Xi ] = −aτ + fY (QY ;F (τ))Xi β

where Ti = 1{Yi > QY ;F (τ)}
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009) 

Estimating RIFs  

'E [Ti |Xi ] = −cτ + fY (QY ;F (τ))Xi β

So 

'Ti = −cτ + fY (QY ;F (τ))Xi β + εi

where E [εi |Xi ] = 0

A regression!  

Estimate (best linear approximation to the) RIF by:  
1 Regressing Ti = 1{Yi > QY ;F (τ)} on Xi

2 Dividing β̂ by ffY (QY ;F (τ))

3 That’s it!  
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Part 2: Quantile Methods Firpo, Fortin, and Lemieux (2009) 

RIF Limitations  

RIF approximation depends crucially on the estimated ffY (QY ;F (τ))

RIF inherently marginal: influence f’n describes small changes in Xi

MM ’05: “What is the avg. difference in quantiles of Y1i and Y0i ?” 
(see also Chernozhukov et al. 2009) 
FFL ’09: “What is the avg. effect on the quantile of Yi if we were to 
randomly switch one individual from Di = 0 to Di = 1?” 

As with all decomposition methods, RIFs reflect a “partial  
equilibrium”: changes in Di holding Wi fixed  

...but at least it can describe the unconditional distribution! 
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Bonus: Mundlak as OVB 

The Mundlak Decomposition 

As David showed in class, the fixed-effects regression 

Yij = α + r l Sij + µj + εij

implies a decomposition of the coefficient from regressing Yij on Sij : 

r s = r l + λ b 

where 

¯Cov(µj ,Sj )
λ = 

Var(S̄j ) 
Cov(S̄j ,Sij )b = Var(Si )

We can think of λ as the return to mean establishment schooling and b as 
the association between worker and establishment schooling 
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Bonus: Mundlak as OVB 

Mundlak as OVB 

We can derive this decomposition from the classical omitted variables bias 
formula: 

Cov(µj ,Sij )r s = r l + 1'r'" 'r'" 'r'" Var(Sij )"short" "long" "effect of omitted" ' r' " 
"regresion of omitted on included" 

Define 

S̃ij = Sij − S̄j 

which is the “within establishment” variation in Sij (i.e. the residual from 
regressing Sij on establishment FEs. By construction 

¯Cov(S̄j ,Sij ) = Cov(S̄j ,Sj + S̃ij ) 
= Var(S̄j ) 
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Bonus: Mundlak as OVB 

Mundlak as OVB (cont.) 
Therefore, 

¯ ¯Cov(µj ,Sj + S̃ij ) Cov(µj ,Sj + S̃ij ) Var(S̄j )r s = r l = r l+ +
Var(S̄j + S̃ij ) Var(S̄j ) Var(S̄j + S̃ij ) 

¯Cov(µj ,Sj ) Cov(S̄j ,Sij ) 
= r l + 

Var(S̄j ) Var(S̄j )  

˜ since Cov(µj ,Sij ) = 0, also by construction. This is Mundlak. 
We can also use OVB intuition to estimate this decomposition; note that 

Cov(S̄j ,Sij )r s = r l + λ Var(Si ) 

is the OVB formula for the “long” regression of 

Yij = α l + r l Sij + λ S̄j + εij
l 

which we can run to estimate λ (and then solve for b)! 
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