14.662 Recitation 1

DFL, MM, FFL, and a quick Mundlak

Peter Hull

Spring 2015

Part 1: Review: DiNardo, Fortin, and Lemieux (1996)

Why All the Fancy New 'Metrics?

- Growing interest in the distribution of wages
- Would like to link distributional features of Y_{i} to other factors, X_{i}
- As a descriptive task (e.g. "how much of the $90^{\text {th }}-10^{\text {th }}$ percentile gap in wages can we explain by differences in education?")
- To answer causal questions (e.g. "what would happen to the $10^{\text {th }}$ percentile of earnings if we made community college free?")
- OLS/IV are all about means; to say something about other distributional features, we have to learn some new skills
- In some cases (e.g. "conditional" v. "unconditional" quantile regression), we have to face issues that OLS inherently sidesteps

DFL '96 Overview

- DFL extend the Oaxaca-Blinder mean-decomposition intuition to decompose wage distributions
- Basic idea: write

$$
f\left(w ; t_{w}, t_{z}\right)=\int_{z} f\left(w \mid z, t_{w}, t_{z}\right) d F\left(z \mid t_{w}, t_{z}\right)
$$

where $w=$ wage, $z=$ individual attributes, $t_{v}=$ "time" (parameterizes distribution of v)

- Assume $f\left(w \mid z, t_{w}, t_{z}\right)=f\left(w \mid z, t_{w}\right), d F\left(z \mid t_{w}, t_{z}\right)=d F\left(z \mid t_{z}\right)$:

$$
\begin{aligned}
f\left(w ; t_{w}=t, t_{z}=t^{\prime}\right) & =\int_{z} f\left(w \mid z, t_{w}=t\right) d F\left(z \mid t_{z}=t^{\prime}\right) \\
& =\int_{z} f\left(w \mid z, t_{w}=t\right) \psi\left(z ; t^{\prime}, t\right) d F\left(z \mid t_{z}=t\right)
\end{aligned}
$$

where $\psi\left(z ; t^{\prime}, t\right) \equiv d F\left(z \mid t_{z}=t^{\prime}\right) / d F\left(z \mid t_{z}=t\right)$

DFL '96 Results

- $\psi\left(z ; t^{\prime}, t\right)$ a "reweighting" that gives a "counterfactual" distribution of wages when $t^{\prime} \neq t$ (like O-B)
- Once you estimate $\psi\left(z ; t^{\prime}, t\right)$, you can estimate (by KDE) "the density [of wages] that would have prevailed if individual attributes had remained at their 1979 level and workers had been paid according to the wage schedule observed in 1988"
- By Bayes' rule:

$$
\psi\left(z ; t^{\prime}, t\right) \equiv \frac{P\left(z \mid t^{\prime}\right)}{P(z \mid t)}=\frac{P\left(t^{\prime} \mid z\right) \cdot P(z) / P\left(t^{\prime}\right)}{P(t \mid z) \cdot P(z) / P(t)}=\frac{P\left(t^{\prime} \mid z\right)}{P(t \mid z)} \frac{P(t)}{P\left(t^{\prime}\right)}
$$

and it's easy to estimate these pieces (DFL use probit)

- DFL show this decomposition, while also accounting for changes in unionization rates and the min. wage (see notes for details). Find a lot of residual difference between 1979 and 1988 wage distribution
- Reminder \#1: decomposition order matters (as with O-B)
- Reminder \#2: partial equilibrium exercise (by assumption)

Part 2: Quantile Methods

Conditional QR: a Review

- The quantile function Q_{Y} is defined as the inverse of a CDF:

$$
Q_{Y}\left(\tau \mid X_{i}\right)=y \Longleftrightarrow F_{Y}\left(y \mid X_{i}\right)=\tau
$$

It is thus invariant to monotone transformations $T(\cdot)$:

$$
\begin{aligned}
Q_{Y}\left(\tau \mid X_{i}\right)=y & \Longrightarrow P\left(Y_{i} \leq y \mid X_{i}\right)=\tau \Longrightarrow \\
P\left(T\left(Y_{i}\right) \leq T(y) \mid X_{i}\right)=\tau & \Longrightarrow Q_{T(Y)}\left(\tau \mid X_{i}\right)=T\left(Q_{Y}\left(\tau \mid X_{i}\right)\right)=T(y)
\end{aligned}
$$

- Conditional $Q R$ models $Q_{Y}\left(\tau \mid X_{i}\right)$ as a linear function of X_{i} :

$$
Q_{Y}\left(\tau \mid X_{i}\right)=X_{i}^{\prime} \beta_{\tau}
$$

- This implies (can verify by writing out integrals and taking FOC):

$$
\begin{aligned}
\beta_{\tau} & =\underset{b}{\arg \min _{b}\left[\rho_{\tau}\left(Y-X_{i}^{\prime} b\right)\right]} \\
\rho_{\tau}(\varepsilon) & \equiv \begin{cases}\tau \varepsilon, & \varepsilon \geq 0 \\
(1-\tau)|\varepsilon|, & \varepsilon<0\end{cases}
\end{aligned}
$$

Interpreting Conditional QR

- A linear $Q_{Y}\left(\tau \mid X_{i}\right)$ is consistent with a location-scale model:

$$
Y_{i}=X_{i}^{\prime} \alpha+X_{i}^{\prime} \delta \varepsilon_{i}, \varepsilon_{i} \Perp X_{i}
$$

Since Y_{i} is monotone in ε_{i} conditional on X_{i} :

$$
\begin{aligned}
Q_{Y}\left(\tau \mid X_{i}\right) & =X_{i}^{\prime} \alpha+X_{i}^{\prime} \delta Q_{\varepsilon}\left(\tau \mid X_{i}\right) \\
& =X_{i}^{\prime} \alpha+X_{i}^{\prime} \delta Q_{\varepsilon}(\tau)=X_{i}^{\prime} \beta_{\tau}
\end{aligned}
$$

- β_{τ} is the effect of X_{i} on the $\tau^{t h}$ quantile of Y (not the effect on the $\tau^{\text {th }}$ quantile individual)
- If X_{i} is multidimensional, $\beta_{\tau, 1}$ is the effect of $X_{i, 1}$ on the $\tau^{t h}$ quantile of Y, conditional on $X_{i, 2} \ldots X_{i, k}$
- Ex: $X_{i}=\left[\begin{array}{ll}D_{i} & W_{i}^{\prime}\end{array}\right]^{\prime}$ for D_{i} binary: $\beta_{\tau, 1}=$ quantile treatment effect

Why is QR "Conditional" when OLS is not?

- Suppose $Y_{i}=\beta D_{i}+W_{i}^{\prime} \gamma+\left(1+D_{i}\right) \varepsilon_{i}$ with $\varepsilon_{i} \Perp D_{i}, W_{i}$
\Longrightarrow Both $E\left[Y \mid D_{i}, W_{i}\right]$ and $Q_{Y}\left(\tau \mid D_{i}, W_{i}\right)$ are linear
- Both QR and OLS give the conditional effect of D_{i} on Y_{i} :

$$
\begin{aligned}
E\left[Y_{1 i} \mid W_{i}\right]-E\left[Y_{0 i} \mid W_{i}\right] & =\beta+W_{i}^{\prime} \gamma+E\left[2 \varepsilon_{i}\right]-\left(W_{i}^{\prime} y+E\left[\varepsilon_{i}\right]\right) \\
& =\beta \\
Q_{Y_{1}}\left(\tau \mid W_{i}\right)-Q_{Y_{0}}\left(\tau \mid W_{i}\right) & =\beta+W_{i}^{\prime} \gamma+2 Q_{\varepsilon}(\tau)-\left(W_{i}^{\prime} \gamma+Q_{\varepsilon}(\tau)\right) \\
& =\beta+Q_{\varepsilon}(\tau)
\end{aligned}
$$

- But not necessarily the unconditional effect:

$$
\begin{aligned}
E\left[Y_{1 i}\right]-E\left[Y_{0 i}\right]= & \beta+E\left[W_{i}^{\prime} \gamma\right]+E\left[2 \varepsilon_{i}\right]-\left(E\left[W_{i}^{\prime} \gamma\right]+E\left[\varepsilon_{i}\right]\right) \\
& =\beta \\
Q_{Y_{1}}(\tau)-Q_{Y_{0}}(\tau)= & \beta+Q_{W^{\prime} \gamma+2 \varepsilon}(\tau)-Q_{W^{\prime} \gamma+\varepsilon}(\tau) \\
& \neq \beta+Q_{W^{\prime} \gamma}(\tau)+2 Q_{\varepsilon}(\tau)-\left(Q_{W^{\prime} \gamma}(\tau)+Q_{\varepsilon}(\tau)\right)
\end{aligned}
$$

"Unconditioning" QR: Machado and Mata (2005)

Skorohod representation: $Y_{i}=Q_{Y}\left(\theta_{i} \mid X_{i}\right)$ for $\theta_{i} \mid X_{i} \sim U(0,1)$, because

$$
\begin{aligned}
\theta_{i} & =F_{Y}\left(Y_{i} \mid X_{i}\right) \Longrightarrow \theta_{i} \mid X_{i} \sim U(0,1) \\
Q_{Y}\left(\theta_{i} \mid X_{i}\right) & =Q_{Y}\left(F_{Y}\left(Y_{i} \mid X_{i}\right) \mid X_{i}\right)=Y_{i}
\end{aligned}
$$

M\&M Marginalizing Method:
(1) $\forall w \in \operatorname{supp}\left(W_{i}\right)$, draw θ_{i}, simulate $\left(\widehat{Y_{1 w i}}, \widehat{Y_{0 w i}}\right)$ with $\widehat{Q_{Y}}\left(\theta_{i} \mid D_{i}, W_{i}\right)$
(2) Average up $\left(\widehat{Y_{1 w i}}, \widehat{Y_{0 w i}}\right)$ by $\widehat{f_{W}}(w)$
(3) Compute $\widehat{Q_{Y_{1}}}(\tau)-\widehat{Q_{Y_{0}}}(\tau)$

Simple, right?
...not really.

- Computationally demanding (especially if you bootstrap SEs!)
- Can be quite sensitive to linear approximation of $Q_{Y}\left(\theta_{i} \mid D_{i}, W_{i}\right)$
- Curse of dimensionality: $\widehat{f}_{W}(w)$ can be poorly estimated

"RIF-ing" QR: Firpo, Fortin, and Lemieux (2009)

Graphical intuition:

Unconditional effect on the $\tau^{t h}$ quantile:

$$
Q_{Y_{1}}(\tau)-Q_{Y_{0}}(\tau) \approx \frac{F_{Y_{0}}\left(Q_{Y_{0}}(\tau)\right)-F_{Y_{1}}\left(Q_{Y_{0}}(\tau)\right)}{f_{Y_{0}}\left(Q_{Y_{0}}(\tau)\right)}
$$

Influence Functions: A Quick Overview

Q: "What happens to statistic $T_{X}(F)$ if I peturb F by adding mass at x "? A:

$$
\operatorname{IF}\left(x ; T_{X}, F\right)=\lim _{\varepsilon \rightarrow 0} \frac{T_{X}\left((1-\varepsilon) F+\varepsilon \delta_{x}\right)-T_{X}(F)}{\varepsilon}
$$

- Ex. 1: $T_{X}(F)=E_{X \sim F}\left[X_{i}\right]:$

$$
\begin{aligned}
\operatorname{IF}\left(x ; T_{X}, F\right) & =\lim _{\varepsilon \rightarrow 0} \frac{E_{X \sim(1-\varepsilon) F+\varepsilon \delta_{x}}\left[X_{i}\right]-E_{X \sim F}\left[X_{i}\right]}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{(1-\varepsilon) E_{X \sim F}\left[X_{i}\right]+\varepsilon E_{X \sim \delta_{x}}\left[X_{i}\right]-E_{X \sim F}\left[X_{i}\right]}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{-\varepsilon E_{X \sim F}\left[X_{i}\right]+\varepsilon E_{X \sim \delta_{x}}\left[X_{i}\right]}{\varepsilon}=x-\mu_{X}
\end{aligned}
$$

- Ex. 2: $T_{Y}(F)=Q_{Y ; F}(\tau):$

$$
I F\left(y ; T_{Y}, F\right)=\frac{\tau-\mathbf{1}\left\{y \leq Q_{Y ; F}(\tau)\right\}}{f_{Y}\left(Q_{Y ; F}(\tau)\right)}
$$

Recentered Influence Functions

- FFL define:

$$
R I F\left(y ; Q_{Y ; F}(\tau), F_{Y}\right)=Q_{Y ; F}(\tau)+\frac{\tau-\mathbf{1}\left\{y \leq Q_{Y ; F}(\tau)\right\}}{f_{Y}\left(Q_{Y ; F}(\tau)\right)}
$$

- Note the expectation of $\operatorname{RIF}\left(x ; T_{X}, F\right)$ is just $T_{X}(F)$:

$$
\begin{aligned}
E\left[R I F\left(Y_{i} ; Q_{Y ; F}(\tau), F_{Y}\right)\right] & =Q_{Y ; F}(\tau)+\frac{\tau-E\left[1\left\{Y_{i} \leq Q_{Y ; F}(\tau)\right\}\right]}{f_{Y}\left(Q_{Y ; F}(\tau)\right)} \\
& =Q_{Y ; F}(\tau)+\frac{\tau-\tau}{f_{Y}\left(Q_{Y ; F}(\tau)\right)}=Q_{Y ; F}(\tau)
\end{aligned}
$$

- So if $E\left[R I F\left(Y_{i} ; Q_{Y ; F}(\tau), F_{Y}\right) \mid X_{i}\right]=X_{i}^{\prime} \beta$,

$$
\begin{aligned}
Q_{Y ; F}(\tau) & =E\left[R I F\left(Y_{i} ; Q_{Y ; F}(\tau), F_{Y}\right)\right] \\
& =E\left[E\left[R I F\left(Y_{i} ; Q_{Y ; F}(\tau), F_{Y}\right) \mid X_{i}\right]\right] \\
& =E\left[X_{i}^{\prime}\right] \beta
\end{aligned}
$$

- Coefficients of a conditional RIF also describe unconditional quantiles

Identifying RIFs

$$
\begin{aligned}
E\left[R I F\left(Y_{i} ; Q_{Y ; F}(\tau), F_{Y}\right) \mid X_{i}\right] & =Q_{Y ; F}(\tau)+\frac{\tau-E\left[1\left\{Y_{i} \leq Q_{Y ; F}(\tau)\right\} \mid X_{i}\right]}{f_{Y}\left(Q_{Y ; F}(\tau)\right)} \\
& =Q_{Y ; F}(\tau)+\frac{\tau-\left(1-P\left(Y_{i}>Q_{Y ; F}(\tau) \mid X_{i}\right)\right)}{f_{Y}\left(Q_{Y ; F}(\tau)\right)} \\
& =c_{\tau}+\frac{P\left(Y_{i}>Q_{Y ; F}(\tau) \mid X_{i}\right)}{f_{Y}\left(Q_{Y ; F}(\tau)\right)}
\end{aligned}
$$

If $E\left[\operatorname{RIF}\left(Y_{i} ; Q_{Y ; F}(\tau), F_{Y}\right) \mid X_{i}\right]=X_{i}^{\prime} \beta$,

$$
\begin{aligned}
c_{\tau}+\frac{P\left(Y_{i}>Q_{Y ; F}(\tau) \mid X_{i}\right)}{f_{Y}\left(Q_{Y ; F}(\tau)\right)} & =X_{i}^{\prime} \beta \\
\quad \Longrightarrow E\left[T_{i} \mid X_{i}\right] & =-a_{\tau}+f_{Y}\left(Q_{Y ; F}(\tau)\right) X_{i}^{\prime} \beta
\end{aligned}
$$

where $T_{i}=\mathbf{1}\left\{Y_{i}>Q_{Y ; F}(\tau)\right\}$

Estimating RIFs

$$
E\left[T_{i} \mid X_{i}\right]=-c_{\tau}+f_{Y}\left(Q_{Y ; F}(\tau)\right) X_{i}^{\prime} \beta
$$

So

$$
\begin{aligned}
& T_{i}=-c_{\tau}+f_{Y}\left(Q_{Y ; F}(\tau)\right) X_{i}^{\prime} \beta+\varepsilon_{i} \\
& \quad \text { where } E\left[\varepsilon_{i} \mid X_{i}\right]=0
\end{aligned}
$$

A regression!
Estimate (best linear approximation to the) RIF by:
(1) Regressing $T_{i}=\mathbf{1}\left\{Y_{i}>Q_{Y ; F}(\tau)\right\}$ on X_{i}
(2) Dividing $\hat{\beta}$ by $\widehat{f_{Y}}\left(Q_{Y ; F}(\tau)\right)$
(3) That's it!

RIF Limitations

- RIF approximation depends crucially on the estimated $\widehat{f_{Y}}\left(Q_{Y ; F}(\tau)\right)$
- RIF inherently marginal: influence f'n describes small changes in X_{i}
- MM '05: "What is the avg. difference in quantiles of $Y_{1 i}$ and $Y_{0 i}$?" (see also Chernozhukov et al. 2009)
- FFL '09: "What is the avg. effect on the quantile of Y_{i} if we were to randomly switch one individual from $D_{i}=0$ to $D_{i}=1$?"
- As with all decomposition methods, RIFs reflect a "partial equilibrium": changes in D_{i} holding W_{i} fixed
- ...but at least it can describe the unconditional distribution!

Bonus: Mundlak as OVB

The Mundlak Decomposition

As David showed in class, the fixed-effects regression

$$
Y_{i j}=\alpha+r^{\prime} S_{i j}+\mu_{j}+\varepsilon_{i j}
$$

implies a decomposition of the coefficient from regressing $Y_{i j}$ on $S_{i j}$:

$$
r^{s}=r^{\prime}+\lambda b
$$

where

$$
\begin{aligned}
\lambda & =\frac{\operatorname{Cov}\left(\mu_{j}, \bar{S}_{j}\right)}{\operatorname{Var}\left(\bar{S}_{j}\right)} \\
b & =\frac{\operatorname{Cov}\left(\bar{S}_{j}, S_{i j}\right)}{\operatorname{Var}\left(S_{i}\right)}
\end{aligned}
$$

We can think of λ as the return to mean establishment schooling and b as the association between worker and establishment schooling

Mundlak as OVB

We can derive this decomposition from the classical omitted variables bias formula:

Define

$$
\tilde{S}_{i j}=S_{i j}-\bar{S}_{j}
$$

which is the "within establishment" variation in $S_{i j}$ (i.e. the residual from regressing $S_{i j}$ on establishment FEs. By construction

$$
\begin{aligned}
\operatorname{Cov}\left(\bar{S}_{j}, S_{i j}\right) & =\operatorname{Cov}\left(\bar{S}_{j}, \bar{S}_{j}+\tilde{S}_{i j}\right) \\
& =\operatorname{Var}\left(\bar{S}_{j}\right)
\end{aligned}
$$

Mundlak as OVB (cont.)

Therefore,

$$
\begin{aligned}
r^{s} & =r^{\prime}+\frac{\operatorname{Cov}\left(\mu_{j}, \bar{S}_{j}+\tilde{S}_{i j}\right)}{\operatorname{Var}\left(\bar{S}_{j}+\tilde{S}_{i j}\right)}=r^{\prime}+\frac{\operatorname{Cov}\left(\mu_{j}, \bar{S}_{j}+\tilde{S}_{i j}\right)}{\operatorname{Var}\left(\bar{S}_{j}\right)} \frac{\operatorname{Var}\left(\bar{S}_{j}\right)}{\operatorname{Var}\left(\bar{S}_{j}+\tilde{S}_{i j}\right)} \\
& =r^{\prime}+\frac{\operatorname{Cov}\left(\mu_{j}, \bar{S}_{j}\right)}{\operatorname{Var}\left(\bar{S}_{j}\right)} \frac{\operatorname{Cov}\left(\bar{S}_{j}, S_{i j}\right)}{\operatorname{Var}\left(\bar{S}_{j}\right)}
\end{aligned}
$$

since $\operatorname{Cov}\left(\mu_{j}, \tilde{S}_{i j}\right)=0$, also by construction. This is Mundlak.
We can also use OVB intuition to estimate this decomposition; note that

$$
r^{s}=r^{\prime}+\lambda \frac{\operatorname{Cov}\left(\bar{S}_{j}, S_{i j}\right)}{\operatorname{Var}\left(S_{i}\right)}
$$

is the OVB formula for the "long" regression of

$$
Y_{i j}=\alpha^{\prime}+r^{\prime} S_{i j}+\lambda \bar{S}_{j}+\varepsilon_{i j}^{\prime}
$$

which we can run to estimate λ (and then solve for b)!

MIT OpenCourseWare
http://ocw.mit.edu

14.662 Labor Economics II

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

