14.662 Recitation 10

Goldberger (1984): Reverse Regression and Salary Discrimination

Peter Hull

Spring 2015

Regressing Discrimination

• Often (both in academia and the "real world") discrimination is diagnosed by regressions of the form

$$y = x'a + bz + e \tag{1}$$

where z indicates a sex/race and x are other relevant "qualifications"

• Another approach is the "reverse" regression of, for $q \equiv x'a$:

$$q = cy + dz + u \tag{2}$$

- A naïf might expect d < 0 if a > 0 ("if men earn more than equallyqualified women, they're less qualified than equally-paid women")
 - But that's only true for deterministic relationships
- We might think (2)≻(1) if qualifications are measured with error (suppose, for some reason, we're not worried about OVB)
 - Goldberger (1984) shows this preference may be ill-founded

Forward and Reverse Regressions

	Schooling (years)									
						High School		College		
	None	1-4	5-7		8	1-3	4	:	1-3	4
				Do	llars					
White	1569	1962	3240	3	981	5013	5529	6104		7779
Nonwhite	1042	1565	2353	2	900	3253	3735	4029		4840
-906 - 11-is Mobie		B . 1	Median	Scho	oling l	by Inco	me			
	Income (\$1000s)									
	None	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7–9	10+
			amerika ana	Ye	ars					
White	8.4	8.0	8.4	8.7	9.5	10.5	11.4	12.1	12.4	14.0
Nonwhite	6.9	5.1	6.5	7.8	8.7	9.3	10.4	11.2	12.1	12.8

A. Median Income by Schooling

Source: Hashimoto and Kochin [20].

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-us/

• Both a > 0 and d > 0 (Hashimoto and Kochin call this a "riddle")

Reverse \succ Forward?

- Reverse regression often suggests less discrimination (in favor of men, whites, etc.), and sometimes even reverse discrimination
 - Conway and Roberts (1983): a = 0.15, d = -0.01 in a sex regression for 274 bank employees, education/experience/age controls
 - Abowd, Abowd, and Killingsworth (1983): a, d > 0 in a race regression from the 1976 Survey of Income and Education
- Conway and Roberts (1983): "The problem of omitted job qualifications points to the weakness of a direct-regression-adjusted income differential [relative to reverse regression]"
- Goldberger shows this is true only in very special case where salary is a deterministic function of productivity and gender
 - In a more general EIV model, forward reg. will be upward-biased and reverse reg. will be downward-biased
 - ...but in another "proxy variable" model forward can be unbiased while reverse is still downward-biased

Multivariate EIV

Data-generating process:

Courtesy of the University of Wisconsin Press. Used with permission.

$$y = \alpha z + p + v$$
$$p = \beta x^*, \ x^* = \mu z + u, \ x = x^* + \varepsilon$$

where v, u, and ε are all white noise terms

Forward Regression

• Estimate E[y|x, z] = az + bx (we normalize everything to be mean-zero for women)

$$b = \frac{Cov(y,\tilde{x})}{Var(\tilde{x})} = \frac{Cov(\alpha z + \beta x^* + v, x^* + \varepsilon - \mu z)}{Var(x^* + \varepsilon - \mu z)}$$
$$= \frac{Cov((\alpha + \beta \mu)z + \beta u + v, u + \varepsilon)}{Var(u + e)} = \beta \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$$

So

$$a = E[y|z = 1] - bE[x|z = 1]$$

= $\alpha + \beta E[x^*|z = 1] - bE[x|z = 1]$
= $\alpha + (\beta - b)\mu$
= $\alpha + \beta \mu \frac{\sigma_e^2}{\sigma_u^2 + \sigma_e^2}$

• Regression puts more weight on a positive correlate to a noisy signal

Reverse Regression

• By substitution,

$$y = (\alpha + \beta \mu)z + \beta u + v$$

• Estimate E[x|y,z] = cy + dz

$$c = \frac{Cov(x, \tilde{y})}{Var(\tilde{y})} = \frac{Cov(\mu z + \varepsilon + u, \beta u + v)}{Var(\beta u + v)} = \frac{\beta \sigma_u^2}{\beta^2 \sigma_u^2 + \sigma_v^2}$$

So

$$d = E[x|z=1] - cE[y|z=1]$$
$$= \mu - c(\alpha + \beta\mu)$$
$$= \frac{\sigma_v^2}{\beta^2 \sigma_u^2 + \sigma_v^2} \mu - c\alpha$$

• Implied discrimination coefficient: $-d/c = \alpha - \mu \sigma_u^2/(\beta \sigma_v^2) < \alpha$

Comparing Forward and Reverse

- Forward regression gives an upper bound on *α*, while reverse regression gives a lower bound
 - Bounds are tighter when μ is smaller (so z and x^* are less correlated)
 - α is closer to *a* when β is smaller or σ_u^2 is larger
 - lpha is closer to -d/c when eta is larger or σ_u^2 is smaller
- If $\sigma_v^2 = 0$ (deterministic salary function), $d = -c\alpha$ and reverse regression is indeed unbiased (but not otherwise)
 - Dempster (1982): "[we are] somewhat skeptical about the existence of a chance mechanism whereby the employer creates a random disturbance an adds it"
 - Are mismeasured qualifications fallible measures of true productivity $(\sigma_v^2 = 0)$ or of its determinants $(\sigma_v^2 > 0)$?

x as a "Proxy" for True Qualification

Data-generating process:

Courtesy of the University of Wisconsin Press. Used with permission.

$$y = \alpha z + \rho + v$$
$$\rho = \beta x + \varepsilon, \ x = \mu z + u$$

where v and ε are white noise terms

Forward and Reverse Regression

Note that by substitution

$$y = \alpha z + \beta x + \varepsilon + v$$

since ε and v are white noise, forward regression will be unbiased

• Reverse regression: for E[x|y,z] = cy + dz

$$c = \frac{Cov(x,\tilde{y})}{Var(\tilde{y})} = \frac{Cov(\mu z + u, \beta u + \varepsilon + v)}{Var(\beta u + \varepsilon + v)} = \frac{\beta \sigma_u^2}{\beta^2 \sigma_u^2 + \sigma_\varepsilon^2 + \sigma_v^2}$$

and $d = \frac{\sigma_v^2}{\beta^2 \sigma_u^2 + \sigma_\varepsilon^2 + \sigma_v^2} \mu - c\alpha$ as before; $-d/c < \alpha$

- Now reverse regression bias persists even if the salary function is deterministic: we have $\sigma_e^2 + \sigma_v^2 > 0$ even if $\sigma_v^2 = 0$
- Bias may be large enough that the reverse regression estimate may be of the wrong sign

Takeaways

- Goldberger (1984) is a nice illustration of how discrimination regressions may be hard to interpret
 - Whether forward or reverse is correct depends on assumed DGP
 - This kind of regression gymnastics builds character!
- Today we would likely care much more about OVB/misspecification
 - If the true wage CEF is nonlinear, forward regression may be sensible and reverse may not (Racine and Rilstone, 1994)
 - If men and women have unobservably different productivity, everything goes out the window
- Is it clear we want to control for productivity?
 - May capture a narrow definition of discrimination (Lundberg and Startz, 1983)

14.662 Labor Economics II

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.