14.75, Recitation 1

OUTLINE OF THE RECITATION

Linear Regression Model: Ordinary Least Squares
- Causality
- Bias
- Estimation
- Standard error

The Wald estimator - Two Stage Least Squares

Linear Regression Model

$$
y_{i}=\beta_{0} x_{i}+\epsilon_{i}
$$

where

- y_{i} is the "outcome", the "independent" variable. Example: country's income
- x_{i} is a "dependent" variable - either the "variable of interest" or a "control" variable. Example: a dummy indicating democracy.
- ϵ_{i} is the error term

What is β_{0} ?
β_{0} is the impact of democracy on income.
Indeed, consider any country, for instance France.

- If France is a democracy, its income is

$$
y_{\text {France }}(1)=\beta_{0}+\epsilon_{\text {France }}
$$

- If it is not, its income is $y_{\text {France }}(0)=\epsilon_{\text {France }}$
- Thus, $\beta_{0}=y_{\text {France }}(1)-y_{\text {France }}(0)$

Similarly, considering all n countries in our sample,

$$
\mathrm{E}\left[y_{i}(1)-y_{i}(0)\right]=\beta_{0}+\mathrm{E}\left[\epsilon_{i}\right]-\mathrm{E}\left[\epsilon_{i}\right]=\beta_{0}
$$

Do we directly observe E $\left[y_{i}(1)-y_{i}(0)\right]$?
NO! For any country, we either observe $y_{i}(1)$ OR $y_{i}(0)$ but not the two of them:

- if France is actually a democracy, we observe $y_{\text {France }}(1)$
- if it is not, we observe $y_{\text {France }}(0)$
- but in no state of the world do we observe both: indeed, we observe $y_{\text {France }}(1)$ and $y_{\text {NorthKorea }}(0)$.

What can we get from the data?

$$
\mathrm{E}\left[y_{i}(1) \mid x_{i}=1\right]-\mathrm{E}\left[y_{i}(0) \mid x_{i}=0\right]
$$

How does this relate to $\mathrm{E}\left[y_{i}(1)-y_{i}(0)\right]$?

Goal:
$\mathrm{E}\left[y_{i}(1) \mid x_{i}=1\right]-\mathrm{E}\left[y_{i}(0) \mid x_{i}=1\right]=\beta_{0}+\mathrm{E}\left[\epsilon_{i} \mid x_{i}=1\right]-\mathrm{E}\left[\epsilon_{i} \mid x_{i}=1\right]$ $=\beta_{0}$.

Bias:

$$
\mathrm{E}\left[y_{i}(0) \mid x_{i}=1\right]-\mathrm{E}\left[y_{i}(0) \mid x_{i}=0\right]=\mathrm{E}\left[\epsilon_{i} \mid x_{i}=1\right]-\mathrm{E}\left[\epsilon_{i} \mid x_{i}=0\right]
$$

What do we need to assume to derive the goal from the observed?

$$
\operatorname{cov}\left(\epsilon_{i}, x_{i}\right)=0
$$

which implies
$\mathrm{E}\left[\epsilon_{i} \mid x_{i}=1\right]=\mathrm{E}\left[\epsilon_{i} \mid x_{i}=0\right]=0$.
Why might we think $\operatorname{cov}\left(\epsilon_{i}, x_{i}\right) \neq 0$?

WHAT IF WE FEAR THAT $\operatorname{cov}\left(\epsilon_{i}, x_{i}\right) \neq 0 ?$

$$
y_{i}=\beta_{0} x_{i}+\epsilon_{i}
$$

(1) Control for things $\epsilon_{i}=w_{i} \gamma+\eta_{i}$ and regress

$$
y_{i}=x_{i} \beta_{0}+w_{i} \gamma+\eta_{i}
$$

where η is uncorrelated with x and w.
(2) Find an Instrument and run Wald estimator (later today)
(3) Difference-in-Difference Estimation, RDD (later this semester))

Back To our linear estimation

$y_{i}=\beta_{0} x_{i}+\epsilon_{i}$: How do we estimate this?
"Ordinary Least Squares" method: find $\hat{\beta}$ that minimizes

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i} \beta\right)^{2}
$$

What does it mean to do this?
The answer:

$$
\widehat{\beta}=\left(\sum x_{i}^{2}\right)^{-1} \sum x_{i} \cdot y_{i} .
$$

UnBiasedness of $\hat{\beta}$

Why is $\widehat{\beta}=\left(\sum x_{i}^{2}\right)^{-1} \sum x_{i} \cdot y_{i}$. a good estimator of β_{0} ?

$$
\begin{aligned}
\widehat{\beta} & =\left(\sum x_{i}^{2}\right)^{-1} \sum x_{i} \cdot y_{i} \\
& =\left(\sum x_{i}^{2}\right)^{-1} \sum x_{i} \cdot\left(x_{i} \beta_{0}+\epsilon_{i}\right) \\
& =\left(\sum x_{i}^{2}\right)^{-1} \sum x_{i}^{2} \beta_{0}+\left(\sum x_{i}^{2}\right)^{-1} \sum x_{i} \epsilon_{i} \\
& =\beta_{0}+\left(\sum x_{i}^{2}\right)^{-1} \sum x_{i} \epsilon_{i}
\end{aligned}
$$

Then

$$
\mathrm{E}[\widehat{\beta} \mid x]=\beta_{0}+\underbrace{\left(\sum x_{i}^{2}\right)^{-1} \sum_{i} x_{i} \mathrm{E}\left[\epsilon_{i} \mid x\right]}_{=0}=\beta_{0}
$$

Standard error of $\widehat{\beta}$

Reminder from class: definition of the standard error of $\widehat{\beta}$? It is the standard deviation of our estimate $\widehat{\beta}$ - thought experiment, run the regression on different samples, and plot the resulting distribution of $\widehat{\beta}$'s.

How do we estimate it? Writing $\operatorname{var}\left(\epsilon_{i} \mid x\right)=\sigma^{2}$,

$$
\begin{aligned}
\operatorname{var}(\widehat{\beta} \mid x) & =\left(\sum x_{i}^{2}\right)^{-2} \operatorname{var}\left(\sum x_{i} \epsilon_{i} \mid x\right) \\
& =\left(\sum x_{i}^{2}\right)^{-2} \sum x_{i}^{2} \operatorname{var}\left(\epsilon_{i} \mid x\right) \\
& =\left(\sum x_{i}^{2}\right)^{-2} \sum x_{i}^{2} \sigma^{2} \\
& =\frac{\sigma^{2}}{\sum x_{i}^{2}}
\end{aligned}
$$

 estimate for $\sigma^{2}: \hat{\sigma^{2}}=\frac{\epsilon^{2}}{n-1}$

VALID INSTRUMENTS

We fear that we have omitted important variables which also affect income y and are correlated with x. Examples?

Fix we saw in class?
Use an instrument z
Conditions for z to be a valid instrument?
(1) z must affect x.
(2) Exclusion restriction: z can affect y only through its effect on x :

$$
\mathrm{E}\left[\epsilon_{i} \mid z_{i}=1\right]-\mathrm{E}\left[\epsilon_{i} \mid z_{i}=0\right]=0
$$

$\beta=\frac{\text { Reduced Form }}{\text { First Stage }}$
with

$$
\begin{aligned}
\text { Reduced Form } & =\mathrm{E}\left[y_{i} \mid z_{i}=1\right]-\mathrm{E}\left[y_{i} \mid z_{i}=0\right] \\
& =\beta\left[\mathrm{E}\left[x_{i} \mid z_{i}=1\right]-\mathrm{E}\left[x_{i} \mid z_{i}=0\right]\right] \\
& -\left[\mathrm{E}\left[\epsilon_{i} \mid z_{i}=1\right]-\mathrm{E}\left[\epsilon_{i} \mid z_{i}=0\right]\right] \\
& =\beta\left[\mathrm{E}\left[x_{i} \mid z_{i}=1\right]-\mathrm{E}\left[x_{i} \mid z_{i}=0\right]\right]
\end{aligned}
$$

and

$$
\text { First Stage }=\mathrm{E}\left[x_{i} \mid z_{i}=1\right]-\mathrm{E}\left[x_{i} \mid z_{i}=0\right]
$$

MIT OpenCourseWare
http://ocw.mit.edu

14.75 Political Economy and Economic Development

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

