

14.75, RECITATION 1

OUTLINE OF THE RECITATION

Linear Regression Model: Ordinary Least Squares

- Causality
- ${\scriptstyle \bullet}~$ Bias
- Estimation
- Standard error

The Wald estimator - Two Stage Least Squares

14.75, Recitation 1

LINEAR REGRESSION MODEL

$$y_i = \beta_0 x_i + \epsilon_i$$

where

- y_i is the "outcome", the "independent" variable. Example: country's income
- x_i is a "dependent" variable either the "variable of interest" or a "control" variable. Example: a dummy indicating democracy.
- ϵ_i is the error term

What is β_0 ?

CAUSALITY

14.75, Recitation 1

 β_0 is the impact of democracy on income.

Indeed, consider any country, for instance France.

- If France is a democracy, its income is $y_{France}(1) = \beta_0 + \epsilon_{France}$
- If it is not, its income is $y_{France}(0) = \epsilon_{France}$

• Thus,
$$\beta_0 = y_{France}(1) - y_{France}(0)$$

Similarly, considering all n countries in our sample,

$$\mathbf{E}[y_i(1) - y_i(0)] = \beta_0 + \mathbf{E}[\epsilon_i] - \mathbf{E}[\epsilon_i] = \beta_0$$

Do we directly observe $E[y_i(1) - y_i(0)]$?

NO! For any country, we either observe $y_i(1)$ OR $y_i(0)$ but not the two of them:

- if France is actually a democracy, we observe $y_{France}(1)$
- if it is not, we observe $y_{France}(0)$
- but in no state of the world do we observe both: indeed, we observe $y_{France}(1)$ and $y_{NorthKorea}(0)$.

What can we get from the data?

$$E[y_i(1)|x_i = 1] - E[y_i(0)|x_i = 0]$$

How does this relate to $E[y_i(1) - y_i(0)]$?

POTENTIAL BIAS

$$\underbrace{ \begin{split} & \underbrace{ \mathbf{E} \left[y_i(1) | x_i = 1 \right] - \mathbf{E} \left[y_i(0) | x_i = 0 \right] }_{Observed} = \\ & \underbrace{ \mathbf{E} \left[y_i(1) | x_i = 1 \right] - \mathbf{E} \left[y_i(0) | x_i = 1 \right] }_{Goal} + \\ & \underbrace{ \mathbf{E} \left[y_i(0) | x_i = 1 \right] - \mathbf{E} \left[y_i(0) | x_i = 0 \right] }_{Bias} \end{split}$$

Goal:

$$E[y_i(1)|x_i = 1] - E[y_i(0)|x_i = 1] = \beta_0 + E[\epsilon_i|x_i = 1] - E[\epsilon_i|x_i = 1]$$

= $\beta_0.$

Bias:

$$E[y_i(0)|x_i = 1] - E[y_i(0)|x_i = 0] = E[\epsilon_i|x_i = 1] - E[\epsilon_i|x_i = 0].$$

14.75, Recitation 1

KEY ASSUMPTION

What do we need to assume to derive the goal from the observed?

 $cov(\epsilon_i, x_i) = 0$

which implies $E[\epsilon_i | x_i = 1] = E[\epsilon_i | x_i = 0] = 0.$

Why might we think $cov(\epsilon_i, x_i) \neq 0$?

14.75, Recitation 1 What if we fear that $cov(\epsilon_i, x_i) \neq 0$?

$$y_i = \beta_0 x_i + \epsilon_i$$

① Control for things $\epsilon_i = w_i \gamma + \eta_i$ and regress

$$y_i = x_i\beta_0 + w_i\gamma + \eta_i$$

where η is uncorrelated with x and w.

- 2 Find an Instrument and run Wald estimator (later today)
- ③ Difference-in-Difference Estimation, RDD (later this semester))

BACK TO OUR LINEAR ESTIMATION

 $y_i = \beta_0 x_i + \epsilon_i$: How do we estimate this?

"Ordinary Least Squares" method: find $\hat{\beta}$ that minimizes

$$\sum_{i=1}^{n} \left(y_i - x_i \beta \right)^2$$

What does it mean to do this?

The answer:

$$\widehat{\beta} = \left(\sum x_i^2\right)^{-1} \sum x_i \cdot y_i.$$

Unbiasedness of $\hat{\beta}$

Why is
$$\widehat{\beta} = (\sum x_i^2)^{-1} \sum x_i \cdot y_i$$
. a good estimator of β_0 ?

$$\widehat{\beta} = \left(\sum x_i^2\right)^{-1} \sum x_i \cdot y_i$$

$$= \left(\sum x_i^2\right)^{-1} \sum x_i \cdot (x_i\beta_0 + \epsilon_i)$$

$$= \left(\sum x_i^2\right)^{-1} \sum x_i^2\beta_0 + \left(\sum x_i^2\right)^{-1} \sum x_i\epsilon_i$$

$$= \beta_0 + \left(\sum x_i^2\right)^{-1} \sum x_i\epsilon_i.$$

Then

14.75, Recitation 1

$$\mathbf{E}\left[\widehat{\beta}|x\right] = \beta_0 + \left(\underbrace{\sum x_i^2}_{i}\right)^{-1} \underbrace{\sum x_i \mathbf{E}\left[\epsilon_i|x\right]}_{=0} = \beta_0$$

Standard error of \widehat{eta}

Reminder from class: definition of the standard error of $\hat{\beta}$? It is the standard deviation of our estimate $\hat{\beta}$ - thought experiment, run the regression on different samples, and plot the resulting distribution of $\hat{\beta}$'s.

How do we estimate it? Writing $var(\epsilon_i|x) = \sigma^2$,

$$var\left(\widehat{\beta}|x\right) = \left(\sum x_i^2\right)^{-2} var\left(\sum x_i\epsilon_i|x\right)$$
$$= \left(\sum x_i^2\right)^{-2} \sum x_i^2 var\left(\epsilon_i|x\right)$$
$$= \left(\sum x_i^2\right)^{-2} \sum x_i^2 \sigma^2$$
$$= \frac{\sigma^2}{\sum x_i^2}$$

We get $var(\hat{\beta}|x)$, an estimate of $var(\hat{\beta}|x)$ by finding an estimate for σ^2 : $\hat{\sigma^2} = \frac{\epsilon^2}{n-1}^{11}$

14.75, Recitation 1

VALID INSTRUMENTS

We fear that we have omitted important variables which also affect income y and are correlated with x. Examples?

Fix we saw in class? Use an instrument z

Conditions for z to be a valid instrument?

- **1**z must affect x.
- 2 Exclusion restriction: z can affect y only through its effect on x:

$$\mathbf{E}\left[\epsilon_{i}|z_{i}=1\right] - \mathbf{E}\left[\epsilon_{i}|z_{i}=0\right] = 0$$

14.75, RECITATION 1

The Wald estimator

$$\beta = \frac{\text{Reduced Form}}{\text{First Stage}}$$
 with

Reduced Form =
$$E[y_i|z_i = 1] - E[y_i|z_i = 0]$$

= $\beta [E[x_i|z_i = 1] - E[x_i|z_i = 0]]$
- $[E[\epsilon_i|z_i = 1] - E[\epsilon_i|z_i = 0]]$
= $\beta [E[x_i|z_i = 1] - E[x_i|z_i = 0]]$

 and

First Stage =
$$E[x_i|z_i = 1] - E[x_i|z_i = 0]$$

MIT OpenCourseWare http://ocw.mit.edu

14.75 Political Economy and Economic Development Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.