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Question 1 
Recall Arrow’s impossibility theorem which states that if a social order-

ing is transitive, weakly Paretian and satisfies independence from irrelevant 
alternatives, then it is dictatorial. 

1. Consider a society with two individuals 1 and 2 and three choices, a, b, 
and c. For the purposes of this exercise, only consider strict individual 
and social orderings (i.e., no indifference allowed). Suppose that the 
preferences of the first agent are given by abc (short for a � b � c, 
i.e., a strictly preferred to b, strictly preferred to c). Consider the six 
possible preference orderings of the second individual, i.e., s2 ∈ {abc, 
acb, bac, ...}, etc.. Define a social ordering as a mapping from the 
preferences of the second agent (given the preferences of the first) into 
a social ranking of the three outcomes, i.e., some function f such that 
the social ranking is s = f (s2). Illustrate the Arrow impossibility 
theorem using this example. 

Suppose we have a transitive and Weakly Paretian social ordering φ 
which also satisfies the Independence of Irrelevant Alternatives (IIA). 
Let R denote the set of strict orders on P = {a, b, c}, i.e. 

R = {abc, acb, bac, bca, cab, cba} 

Here, φ : R × R → R, and define f : R → R as 

f(ρ) = φ(abc, s2) 

for all s2 ∈ R. 

Our claim is that we must have one of the two following cases: 
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(a) f(s2) = abc for all s2 ∈ R (in this case 1 is the dictator), or, 

(b) f(s2) = s2 for all s2 ∈ R (in this case 2 is the dictator). 

I will start this illustration by observing that, since φ is Weakly Pare-
tian, we must have: 

• φ(abc, abc) = abc ⇒ f(abc) = abc 

• φ(abc, acb) ∈ {abc, acb} ⇒ f(abc) ∈ {abc, acb} 
• φ(abc, bac) ∈ {abc, bac} ⇒ f(bac) ∈ {abc, bac} 
• φ(abc, bca) ∈ {abc, bac, bca} ⇒ f(bca) ∈ {abc, bac, bca} 
• φ(abc, cab) ∈ {abc, acb, cab} ⇒ f(cab) ∈ {abc, acb, cab} 

Perhaps an easier way to demonstrate this idea is the following ta-
ble (where xy denotes that x must be ranked above y by the social 
ordering): 

s2 abc acb bac bca cab cba 
f(s2) abc ab,ac ac,bc bc ab 

I will investigate two possibilities: 

(a) Assume f(acb) = abc. 

• Note that individual 1 prefers b over c, individual prefers 
c over b and the social ordering ranks b over c. By IIA, 
the social ordering must rank b over c whenever this hap-
pens. Consequently, we must have f(cab) = abc and f(cba) ∈ 
{abc, bac, bca}. We end up with the following table: 

s2 abc acb bac bca cab cba 
f(s2) abc abc ac,bc bc abc bc 

• Realize that f(cab) = abc, so when individual 1 prefers a 
over c and individual prefers c over a, the social ordering 
ranks a over c. By IIA, the social ordering must rank a 
over c whenever this happens. Consequently, we must have 
f(bca) ∈ {abc, bac} and f(cba) ∈ {abc, bac}. We end up with 
the following table: 

s2 abc acb bac bca cab cba 
f(s2) abc abc ac,bc ac,bc abc ac,bc 
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• Now assume, towards a contradiction, that f(bac) = bac. 
By IIA applied to a and b, whenever individual 1 prefers a 
over b and individual 2 prefers b over a, the social ordering 
must rank b over a. But then, consider the social ordering 
φ(acb, cba). Since individual 1 prefers a over b and individual 
2 prefers b over a, the social ordering must rank b over a. 
Since individual 1 prefers a over c and individual 2 prefers c 
over a, the social ordering must rank a over c. Combining 
these, we must have: 

φ(acb, cba) = bac 

which contradicts with φ being Weakly Paretian (both indi-
viduals prefer c over b but the social ordering ranks b over 
c). 

• We conclude that we must have f(bac) = abc, so, by IIA 
applied to a and b, we must have: f(bca) = f(cba) = abc as 
well. 

s2 abc acb bac bca cab cba 
f(s2) abc abc abc abc abc abc 

We conclude that when f(acb) = abc, we must have: f(s2) = 
abc for all s2 ∈ R. 

(b) Assume f(acb) = acb. You should have a good grasp of the idea 
by now, so I’ll not repeat it step-by-step here. Very briefly, 

• IIA applied to b and c implies f(bac) ∈ {acb, cab}, f(cab) ∈ 
{acb, cab} and f(cba) ∈ {acb, cab, cba}. 

• Assume, towards a contradiction, that f(bac) = abc. By IIA 
applied to a and b, we must have f(bca) = abc. Then, by 
IIA applied to a and c and IIA applied to b and c, we must 
have φ(bac, cba) = acb, a contradiction to φ being Weakly 
Paretian. We conclude that we must have f(bac) = bac. 

• By IIA applied to a and b, we must have: f(bca) ∈ {bac, bca}
and f(cba) = cba. 

• By IIA applied to a and c, we must have: f(s2) = s2 for all 
s2 ∈ R. 

If you feel like you need a clearer guide, Section 2.1 of Austen-Smith 
and Banks’ “Positive Political Theory I” has an in-depth discussion of 
this two-individuals, three-alternatives example. 
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2. Now suppose we have the following aggregation rule: individual 1 will 
(sincerely) rank the three outcomes, his first choice will get 6 votes, 
the second 3 votes, the third 1 vote. Individual 2 will do the same, 
his first choice will get 8 votes, the second 4 votes, and the third 0 
vote. The three choices are ranked according to the total number of 
votes. Which of the axioms of the Arrow’s impossibility theorem does 
this aggregation rule violate? 

This aggregation rule, commonly known as the Borda rule, violates 
the Independence of Irrelevant Alternatives (IIA). 

Consider the following example: individual 1 has preferences abc and 
individual 2 has preferences bac. It is trivial to check that the ag-
gregation rule yields bac in this case. Now, consider the case where 
individual 1 has preferences acb and individual 2 has preferences bac. 
The aggregation rule yields abc in this case. Note that the relative 
ordering of a vs b has not changed in either agent’s preferences in 
both cases, but the ordering given by the aggregation rule is changed, 
violating IIA. 

3. With the above voting rule, show that for a certain configuration of 
preferences, either agent has an incentive to distort his true ranking 
(i.e., not vote sincerely). 

Assume that the social alternative which is ranked first by the aggrega-
tion rule is chosen. Consider the example in the previous part, where 
individual 1 has preferences abc, individual 2 has preferences bac, and 
b is chosen. Here, individual 1 can deviate and submit acb, ensuring 
that a is chosen instead. But when individual 1 submits acb, individ-
ual 2 can deviate and submit bca, ensuring that b is chosen instead of 
a. 

This non-strategy-proofness is not surprising: it is a natural implica-
tion of the Gibbard-Satterthwaite Theorem. (You can check Recita-
tion 1 Notes if you need a refresher.) 

4. Now consider a society consisting of three individuals, with preferences 
given by: 

1 
2 
3 

a � b � c 
c � a � b 
b � c � a 

Consider a series of pairwise votes between the alternatives. Show 
that when agents vote sincerely, the resulting social ordering will be 

4 



“intransitive”. Relate this to the Arrow’s impossibility theorem. 

Consider the following set of pairwise votes: 

• When a goes against b, a wins. 

• When a goes against c, c wins. 

• When b goes against c, b wins. 

Therefore, the social ordering induced by pairwise voting rule yields 
a � b � c � a, violating transitivity. This is not surprising given Ar-
row’s Impossibility Theorem, indeed: it is trivial to check that the pair-
wise voting rule is weakly Paretian, satisfies IIA and non-dictatorial. 
By Arrow’s Impossibility Theorem, it must be intransitive (i.e. there 
is a preference profile for which the pairwise voting rule yields an in-
transitive social ordering). 

5. Show that if the preferences of the second agent are changed to b � 
a � c, the social ordering is no longer “intransitive”. Relate this to 
“single-peaked preferences”. 

In this case, 

• When a goes against b, b wins. 

• When a goes against c, a wins. 

• When b goes against c, b wins. 

So the social ordering induced by pairwise voting rule yields b � a � c, 
a transitive one. 

Note that these preferences are single-peaked when according to the 
(intuitive) ordering with a being the most left-wing policy and c be-
ing the most right-wing one. This restriction on preference domain 
allows us to invoke the median voter theorem, which guarantees that 
a Condorcet winner exists (b in this case). 

6. Explain intuitively why single-peaked preferences are sufficient to en-
sure that there will not be intransitive social orderings. How does this 
relate to the Arrow’s impossibility theorem? 

There are of course more than one correct answers to this question. 
Mine would be: the restriction to single-peaked preferences also makes 
the “support” a policy receives a single-peaked function. That is, a 
policy predictably becomes more popular if we are moving towards the 
median, and it loses support if e move away from the median. 
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Question 2 

1. Consider the example of a three-person three-policy society with pref-
erences 

1 a � b � c 
2 b � c � a 
3 c � b � a 

Voting is dynamic: first, there is a vote between a and b. Then, the 
winner goes against c, and the winner of this contest is the social 
choice. Find the subgame perfect Nash equilibrium with weakly un-
dominated strategies within each stage in this two-stage game. 

First, some general commentary about the “point” of this question. 
Begin by realizing that the preferences are single-peaked with respect 
to the alphabetical order (a is the left-most and c is the right-most 
policy). Following the discussion in class, we know that there is a 
Condorcet winner in this case: namely, it is the most preferred choice 
of the voter with the median bliss point. The median voter in this 
question turns out to be player 3, and her most preferred policy is b 
– it is the “moderate” policy among the three. It is trivial to check 
that b is the Condorcet winner, and we would expect any reasonable 
voting rule to implement b in this case. Nevertheless, as also discussed 
in the lecture (see page 27 of Lecture 1 and 2 notes) things tend to 
get complicated when voters are voting strategically. This question 
attempts to argue that sequential voting implements the reasonable 
policy (the Condorcet winner) even when voters are strategic. Belief 
in electoral systems restored! :)1 

I would argue that this turned out to be a less-spectacular-than-
intended question because the definition of weakly undominated strate-
gies within each stage is not clear.2 Now, following our discussion in 
class, in a one-stage voting game the only weakly undominated strat-
egy is voting sincerely (because a strategic player should condition on 
herself being pivotal, and whenever she is pivotal she should vote for 
her best option, i.e. vote sincerely). In a dynamic (multi-stage) game, 
though, this definition requires a little bit more elaboration. In ret-
rospect, I believe we should have asked for a Subgame Perfect Nash 
Equilibrium with strategies which survive the Iterated Elimination of 

1This belief only lasts until Lectures 6 and 7, though. 
2I’ve also had a hard time figuring out the exact distinction and the meaning behind 

this wording. 
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Weakly Dominated Strategies – semantically a much better choice, es-
pecially for a theorist. I’ll provide the solution assuming this wording. 
Below, I’m trying to be as pedagogical as possible and I’m providing 
the answers for (i) Subgame Perfect Nash Equilibrium, (ii) Subgame 
Perfect Nash Equilibrium with weakly undominated strategies, and 
(iii) Subgame Perfect Nash Equilibrium with strategies which survive 
the Iterated Elimination of Weakly Dominated Strategies. 

Some basics first: Following the hint given in the question, a (pure) 
strategy for a player i ∈ {1, 2, 3} is a 3-tuple: 

si ∈ {a, b} × {a, c} × {b, c} 

where the first element denotes the vote in the first stage, the second 
element denotes the vote in the subgame where a wins in the first 
stage, and the third element denotes the vote in the subgame where b 
wins in the first stage. 

Let S denote the set of all possible strategies for a player (there are 
eight of them!). A strategy profile is (s1, s2, s3) ∈ S × S × S. Given 
a player i ∈ {1, 2, 3}, let s−i ∈ S × S denote the strategy profile of the 
remaining profiles. 

Let φ(s1, s2, s3) denote the outcome of the voting procedure defined in 
the question. Formally, it is a well-defined function: 

φ : S × S × S → {a, b, c} 

(i) Begin with the case where we’re only looking for a Subgame Perfect 
Nash Equilibrium. I know this wasn’t asked in the problem set, 
but it’s useful to see what goes wrong when people are strategic 
and we’re imposing a not-so-stringent equilibrium concept. 

The basic issue you need to realize in this case is: many “crazy” 
equilibria can happen when we’re only looking for subgame per-

∗ ∗fection. For instance, the following strategy profile (s1, s 2, s ∗3) 
is a Subgame Perfect Nash Equilibrium, but it doesn’t yield the 
Condorcet winner: 

∗ s1 = (a, a, c) 
∗ s2 = (a, a, c) 
∗ s3 = (a, a, c) 
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This is a Subgame Perfect Nash Equilibrium simply because none 
of the voters are pivotal at any stage, so unilaterally changing 
their votes would not change the outcome. Consequently, none 
of the players have a strictly profitable deviation. Note that the 
implemented policy is a, the left-most policy. This is a weird 
equilibrium because we cooked it up such that none of the play-
ers really “care” about the equilibrium: they realize they cannot 
change the outcome. For instance, player 3 really hates this out-
come but still votes for a in the second round, just because she 
knows a will win regardless of her vote. If there’s even a tiny 
bit of possibility that player 3 is the pivotal voter in the second 
round, she would vote for b instead. In other words, even though 
voting for b is player 3’s weakly dominant strategy in the last 
round, she doesn’t use this strategy because she knows the gains 
from this strategy will never materialize. 

One way to overcome this weird implication is to assume that 
players never use a weakly dominated strategy, which is what we 
do next. 

(ii) Now, let’s assume that each player uses a weakly undominated 
strategy. Formally, a strategy si ∈ S for player i ∈ {1, 2, 3} is 

0weakly dominated if there exists another strategy si ∈ S such 
that 

0φ(si, s−i) �i φ(si, s−i) for all s−i ∈ S × S 

with 
0φ(si, s−i) �i φ(si, s−i) for some s−i ∈ S × S 

A weakly undominated strategy is simply a strategy which is not 
weakly dominated. 

It should be easy to see (following our discussion in class) that 
any player which uses a weakly undominated strategy should be 
voting sincerely in the last stage. To illustrate, take player 1 and 
assume she uses a strategy s1 = (s1,1, c, s1,3) – that is, she doesn’t 
vote sincerely in the subgame where a wins in the first round. 
Take the alternative strategy s1 

0 = (s1,1, a, s1,3), i.e. the strategy 
of doing the same thing except voting for a in the second round if 
a wins. You should be able to see that s1 is weakly dominated by 
0 3s1. By the same vein, any strategy of the form s1 = {s1,1, s1,2, a} 

3They yield the same payoff if the other two players vote for the same alternative in 
the subgame where a wins in the first round, or, if b wins the first round. Nevertheless, s1 

0 
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i 

0is weakly dominated by s1 = {s1,1, s1,2, c}. One can check that 
no other strategy is weakly dominated. 

It follows that the set of weakly undominated strategies Su for 
player i ∈ {1, 2, 3} are defined as: 

Su = {a, b} × {a} × {b}1 

Su = {a, b} × {c} × {b}2 

Su = {a, b} × {c} × {c}3 

We have reduced the set of strategies for each player to two per 
player, rather than eight per player, which is a big deal! Now, 
we can calculate the Subgame Perfect Equilibrium of the game 
assuming that player i ∈ {1, 2, 3} uses a strategy in Si

u . It turns 
out that this reduction is not sufficient to get the desired result, 
nevertheless. In particular, you can check that the strategy profile 
∗ ∗ ∗(s1, s 2, s 3) ∈ S1 

u ×S2 
u ×Su is a Subgame Perfect Nash Equilibrium 3 

in weakly undominated strategies, but it still doesn’t yield the 
Condorcet winner: 

∗ s1 = (a, a, b) 
∗ s2 = (a, c, b) 
∗ s3 = (a, c, c) 

This is a Subgame Perfect Nash Equilibrium because, similar to 
the example we gave in previous part, none of the voters are piv-
otal in the first stage, so unilaterally changing their votes would 
not change the outcome. Consequently, none of the players have 
a strictly profitable deviation. Note that the implemented policy 
is c, the right-most policy. Note that the implausible implication 
from previous part still continues: player 1 hates outcome c, but 
still votes for outcome a (even though she correctly infers that it 
will lose to c in the second round) because she cannot change the 
outcome. One way to overcome this is assuming that players run 
one more round of elimination of weakly dominated strategies, 
which is what we do next. 

yields a strictly better outcome for player 1 if a wins in the first round and the two other 
players vote for different alternatives in the subgame where a wins. 
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(iii) Let’s now assume that each player uses a strategy which sur-
vives the Iterated Elimination of Weakly Dominated Strategies. 
Formally, this procedure is defined as: 

Step 0: Define S0 = Si 

Step 1: Define 

S1 0 = {si ∈ Si 
0|@si ∈ S0 withi i 

φ(si, s−i) �i φ(si, s−i) for all s−i ∈ S00
−i and 

0φ(si, s−i) �i φ(si, s−i) for some s−i ∈ S0 
−i} 

S1 is the set of weakly undominated strategies: simply, S1 = i i 
Su 
i . 

Step k + 1: Define 

Sk+1 0 = {si ∈ Si
k|@si ∈ Sk withi i 

φ(si, s−i) �i φ(si, s−i) for all s−i ∈ Sk0
−i and 

0φ(si, s−i) �i φ(si, s−i) for some s−i ∈ Sk 
−i} 

Sk+1 
i is the set of strategies which are still weakly undomi-

nated when you know other players use something in Sk 
−i. 

Clearly, this process defines an iterated deletion weakly domi-
nated strategies. Final step: 

S∞ = ∩∞ 
i k=0Si

k 

Let’s solve this game assuming that each player i ∈ {1, 2, 3} uses 
a strategy in S∞ . The first round of elimination discussed in the i 
previous part still applies, and we have: 

S1 = {a, b} × {a} × {b}1 

S1 = {a, b} × {c} × {b}2 

S1 = {a, b} × {c} × {c}3 

Thefefore, each player realizes that: 

• If a wins in the first stage, c will win in the second stage. 

• If b wins in the first stage, b will win in the second stage. 

10 



This is a strong observation – it implies that each agent realizes 
that the voting they’re having in the first round is not between a 
and b. It is, rather, a choice between c and b. Consequently, even 
if a is player 1’s favorite choice, she has incentives to refrain from 
voting for a, and vote for b instead (because she prefers b to c). 

Let’s now continue with the second round of iteration. You can 
see that for each player i ∈ {1, 2, 3}, one of the strategies in S1 

i 
is weakly dominated. To illustrate, take player 1 and compare 

1 = (b, a, b), assuming that s2 ∈ 
In this case, s1 is weakly dominated by s

0the strategies s1 = (a, a, b) and s
S1 and s3 ∈ S1 
2 3 . 

0 4 
1. 

It follows that the set of strategies which survive the Iterated 
Elimination of Weakly Dominated Strategies: 

S∞ 
1 

S∞ 
2 

= {(b, a, b)} 
= {(b, c, b)} 

S∞ 
3 = {(a, c, c)} 

The following is a Subgame Perfect Equilibrium in strategies 
which survive the Iterated Elimination of Weakly Dominated 
Strategies: 

∗ s1 = (b, a, b) 
∗ s2 = (b, c, b) 
∗ s3 = (a, c, c) 

Realize that agents don’t vote sincerely in the first stage: both 1 
and 3 lie about their preferences. Nevertheless, the implemented 
policy is still b, the Condorcet winner. 

2. Suppose a generalization whereby there are finite number of policies, 
Q = {q1, q2, ..., qN } and M agents (which you can take to be an odd 
number for simplicity). Voting takes N − 1 stages. In the first stage, 
there is a vote between q1 and q2. In the second stage, there is a 
vote between the winner of the first stage and q3, until we have a final 
vote against qN . The winner of the final vote is the policy choice of 
the society. Prove that if preferences of all agents are single peaked 
(with a unique bliss point for each), then the unique subgame perfect 

4They yield the same payoff if the other two players vote for the same alternative in 
the first round. Nevertheless, s1 

0 yields a strictly better outcome for player 1 if the two 
other players vote for different alternatives in the first round. 
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Nash equilibrium with weakly undominated strategies within each stage 
implements the bliss point of the median voter. 

Once again, rather than weakly undominated strategies within each 
stage, I’ll refer to strategies which survive the Iterated Elimination of 
Weakly Dominated Strategies. Assuming you get the gist of the idea 
in part 1, I’ll not provide the whole proof here, but rather give the 
general idea. 

The proof is a generalization of the idea presented in part 1. Note that 
in this case a strategy consists of: (i) a vote in {q1, q2} in Round 1, (ii) 
a vote in {q1, q3} if q1 advances in Round 1, (iii) a vote in {q2, q3} if q2 

advances in Round 1, (iv) a vote in {q1, q4} if q1 advances in Round 2... 
So it’s a pretty complicated object. For conciseness, I’ll suppress the 
notation and talk about Round k strategies in general. Furthermore, 
for any l < k, given that ql advances to Round k, it doesn’t really 
matter which alternative ql beats in Round l −1 (i.e. it doesn’t matter 
which alternative advanced to compete with ql as long as it lost to 
ql), so this saves us from some unnecessary complications in defining 
policy space. Shortly, we can refer to sl,k ∈ {ql, qk} as the vote if ql 
advances to Round k − 1. 

Since preferences are single-peaked, we know that there is a Condorcet 
winner. Let qj , with j ∈ {1, . . . , N}, denote the Condorcet winner. 

Begin with the eliminations in the last round, Round k − 1. Consider 
the strategies sj,N , i.e. the strategies that agents will use if j advances 
to Round N − 1. Since this is the last round, by the same argument 
as given in part 1, the agents who use weakly undominated strategies 
vote sincerely. But since qj is the Condorcet winner, by definition, qj 
receives more votes than qN and wins. The similar calculations are 
done for every possible alternative advancing to Round N − 1, and the 
winners are determined for every contingency. Let w(i, N) ∈ {qi, qN }
denote the winner determined by this process, as a result of weakly 
undominated strategies si,N . Since we assume that M is odd, w(i, N) 
is well-defined for each i ∈ {1, . . . , N − 1}. 
Now, let’s consider the next round of eliminations. In particular, con-
sider the strategies sj,N−1. In principle, there is no requirement to 
expect sincere voting at this stage – this is because, similar to the 
observation we made in part 1, strategic agents realize that it is not 
a voting between qj and qN−1; rather, it is a voting between qj and 
w(N −1, N). Nevertheless, regardless of which alternative w(N −1, N) 
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is, qj wins in this round because it is the Condorcet winner. Thus qj 
also wins in this round, even if people may not vote sincerely. 

One can continue this induction to realize that in Rounds j through 
N − 1, qj wins against every alternative ql, even though people realize 
that they’re not indeed voting between qj and ql. (This is simply as an 
implication of qj being the Condorcet winner, and note the crucial role 
of single-peaked preferences here!) At Round j − 1, for the strategy 
si,j for i < j, each agent also realizes that the vote is not between qi 
and qj , but rather between the eventual candidate which wins in the 
last Round if qi advances, and qj (which, as established, wins in the 
following rounds). But once again, being the Condorcet winner, qj 
wins in this case as well. This proves that in Round j − 1, regardless 
of the alternative which proceedss to this round, qj wins and advances, 
beating every other alternative afterwards and thus being the eventual 
winner. We conclude that the procedure implements qj , the bliss point 
of the median voter. 

Question 3 
Consider party competition in a society consisting of a continuum of 

mass 1 of agents, where the set of agents is H. The policy space is the [0, 1] 
interval and assume that preferences are single-peaked. In particular, if an 
agent i ∈ H has bliss point bi, her utility from policy q ∈ [0, 1] is: 

u(bi, q) = −|bi − q| 

Finally, assume that the bliss points are uniformly distributed over this space. 

1. To start with, suppose that there are two parties, A and B. They 
both would like to maximize the probability of coming to power. The 
game involves both parties simultaneously announcing qA ∈ [0, 1] and 
qB ∈ [0, 1], and then voters voting for one of the two parties. The 
platform of the party with most votes gets implemented. Determine 
the equilibrium of this game. How would the result be different if the 
parties maximized their vote share rather than the probability of coming 
to power? 

The question is silent on what the agents who are indifferent between 
the two policies do (do they randomize or do they vote for one of 
the parties?), so I’ll discuss both cases. As the starting point, let’s 
assume that a voter who is indifferent between two policies randomizes 
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between the two parties – and votes for party A with probability π ∈ 
(0, 1).5 I’ll discuss the remaining cases (π ∈ {0, 1}) later. 
Assume that the parties are maximizing the probability of coming to 
power. We begin by observing that we cannot have an equilibrium 
with qA 6 To see why, suppose, towards a contradiction, that we = qB. 
have an equilibrium with qA 6= qB. 

• If there is a tie, one of the parties can deviate to q0 = 1 
2 andi 

increase the probability of winning to one. (Surely the other 
party is not proposing 1 

2 – we would not have a tie in that case.) 

• If one of the parties is losing, then the losing party can deviate to 
1 
2 and increase the probability of winning to π, 1 − π or 1, each 
strictly positive. 

It turns out that in any equilibrium, we need to have qA = qB = q. 
Next, we 6claim that we cannot have q = 1 

2 . To see why, suppose, 
1 
2 . Intowards a contradiction, that we have an equilibrium with q 6= 

such a case, Party A is winning with probability π ∈ (0, 1). But then, 
1 
2either party can deviate to and win with probability one. 

1 
2 is an equilibrium – we conclude It is also easy to see that qA = qB = 

that this is the unique equilibrium. This is simply the Downsian Policy 
Convergence we discussed in Lectures 1 and 2: both parties cater to 
the median voter. 

What happens with π ∈ {0, 1}? 
winning party is still located in q 

In such a case, in equilibrium, the 
= 1 

2 , but the losing party can offer 
any policy in [0, 1] (it will lose with probability one no matter what 
policy it offers, so it is indifferent). Even though the strong form of 
Downsian Policy Convergence does not hold, we still have the median 
voter’s favorite policy being implemented in equilibrium – so we’re 
not that far away. (It is also worth pointing that π ∈ {0, 1} is a 
pathological corner case which we shouldn’t worry much about.) 

Is there much difference when parties maximize their vote shares rather 
than the probability of coming to power? I’d argue not. Using the 
same arguments, one can show that when π = 1 

2 , the Downsian Policy 
1 
2 .Convergence still holds and the unique equilibrium is qA = qB = 

5Assuming that a fraction π of voters always vote for A when indifferent, and the rest 
voting for B when indifferent also works. Also note that this only matters when qA = qB . 
When qA 6= qB , the measure of voters who are indifferent between the policies is zero. 
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When π 6= 1 
2 , there is an existence problem due to the lower hemi-

continuity of the payoff function of the “less popular” party (it wants 
to get as close to 1 

2 , but does not want to offer 1 
2). But the median 

voter’s favorite policy is still implemented, and this is still likely to be 
considered as a pathological case we should worry less about. 

2. Now assume that there are three parties, simultaneously announcing 
their policies qA ∈ [0, 1], qB ∈ [0, 1], and qC ∈ [0, 1], and the platform 
of the party with most votes is implemented. Assume that parties max-
imize the probability of coming to power. Characterize all pure strategy 
equilibria. 

From now on, I will assume that whenever a voter is indifferent among 
two or more parties, she randomizes between them with equal probabil-
ities – otherwise the analysis gets cumbersome due to reasons discussed 
above. 

The following are solutions I generously borrowed from Horacio Lar-
reguy, one of the previous TAs of this class. 

∗Start as before with potential equilibria of the kind qA = qB = qC = q . 
∗ ∗There are two subcases to consider: q =6 1/2 and q = 1/2. In this 

case we have that the probability of winning of party i is 1/3. Then 
if q ∗ 6 1/2; i could deviate to q0 = 1/2 and win the election with = i 
probability 1 ( it gets at least one half of the votes, while the other 

∗parties get at most 1/4 each). If q = 1/2, any party could deviate to 
q0 = q ∗ + ε and get almost 1/2 of the vote share and win the election 
with probability 1. 

Now let’s analyze potential equilibria where, without loss of generality, 
we have qA < qB < qC . In this case the vote share of parties SA = 
qA+qB qC −qA qC +qB; SB = , SC = . Now suppose there is a tie between 2 2 2
the three parties, i.e. SA = SB = SC . In this case party could move 
ε to the right and win with probability 1, hence there can not be an 
equilibrium with qA < qB < qC ; and SA = SB = SC . 

Now assume that two parties are tying and one is losing. If B and A or 
C are tying, then the party on the extreme can move closer to B and 
win with probability 1. If A and C are tying, and B is losing, either 
A or C could move closer to B and win with probability 1. 

Now suppose one party is winning with probability 1. If party B is 
the one winning, then either party A or party C could move to qB ± ε 
and win with probability 1 (by getting more than half the share). Now 
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assume that party A or party C is winning with probability 1. Clearly, 
if qA > 1/2; party B could move to 1/2 and win with probability 1. If 
qC < 1/2 a similar argument could be used, B could move to 1/2 and 
win with probability 1. 

Then we are left only with cases with qA < 1/2; qC > 1/2; qB ∈ 
(qA; qC ). Take the cases where A is winning. Assume that qB < 1/2. 
In this case party C could move to 1/2 and win with probability 1. 
Now take the case where qB ≥ 1/2. For party A to be winning we 
need to have: 

qA + qB qC − qA 
> 

2 2 
qA + qB qC + qB 

> 1 − 
2 2 

which are equivalent to 

qB qC 
> − qA

2 2 
qA + qC 

> 1 − qB
2 

Now let’s consider potential deviations. Party B has two potential 
deviations. The first is to move to qA and get the same votes as party 
A. This is not profitable if 

qC + qA qC + qA
1 − > 

2 4 
qC + qA 2 ⇔ < 

2 3 

The other deviation is to move to qA − ε. This is not profitable if 

qC + qA 
qA < 1 − 

2 
qC + qA 

< 1 − qA
2 

we must have then that � � 
qC + qA 2 

1 − qB < < min 1 − qA,
2 3 
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Now take the deviations by C. The first deviation it could make is 
move to qB + ε. This is not profitable if 

qA + qB
1 − qB < 

2 
2 − 3qB < qA 

C could also jump into A. This is not profitable if 

qB + qA 2 
< 

2 3 

Finally we have 
qB + qA 

< 1 − qA
2 

Then, we can find an equilibrium of this kind if the following holds: � � 
qB + qA qC + qA 2 

1 − qB < < < min 1 − qA,
2 2 3 

qC qB 
qA > − 

2 2 
qB ≥ 1/2 

Take an example with qA = 1/3, qC = 7/8, qB = 3/4. 

Notice 

1 1 29 2 
< < < 

4 2 48 3 
1 7 6 

> − = 1/16 
3 16 16 

Hence, we have equilibria of this kind and the symmetrical case with 
C winning. 

We have the last case to consider qA < qB = qC (and the symmetrical 
case with qA = qB < qC ). Here there are three possibilities, either A 
wins alone, a three party tie, or a two party tie (B and C). First notice 
that A can’t be losing, otherwise it can move to qC and create a tie. 
Now assume that A is winning with probability one. It has to be that 
there is a configuration of the kind qA < 1/2 < qB = qC . This is only 
possible if (qA + qB) /2 > 1/3. Also for B,C to be unwilling to move it 
must be the following restrictions hold � � 

1 qA + qB 2 
< < min 1 − qA,

3 2 3 
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Take again the example of qA = 1/3, qB = 3/5 in which this holds. 

Finally we have a three party tie with qA < qB = qC party A can move 
to the right and win with probability 1. 

Hence there are two types of equilibria of this game 

(a) Two parties with qi = qj < 1/2 (> 1/2) and qk > 1/2 (< 1/2) with 
party k winning with probability 1. 

(b) Parties locating in different positions with qi > qj > qk, with 
one extreme party winning with probability 1. If party k wins then 
qi < 1/2, qj < 1/2, qk > 1/2. If party i is winning, then qi < 1/2, qj > 
1/2, qk > 1/2. 

3. Now assume that the three parties maximize their vote shares. Prove 
that there exists no pure strategy equilibrium. Characterize the mixed 
strategy equilibrium (Hint: assume the same symmetric probability dis-
tribution for two parties, and make sure that given these distributions, 
the third party is indifferent over all policies in the support of the dis-
tribution). 

Once again, courtesy of Horacio Larreguy. 

It is straightforward to check that once parties maximize vote shares 
the above equilibria breakdown and there is no pure strategy Nash 
equilibrium of the game. 

Now, to construct the mixed strategy equilibrium, suppose there is a 
symmetric equilibrium with f(q) being the mixing function in equi-� � 
librium, with support q, q . Furthermore assume the support of f 
is [α, 1 − α] with α ∈ [0, 1/2]. The cumulative distribution is the R x
F (x) = α f (z) dz. 

Now, without loss of generality, assume that party C chooses location 
z, the payoff she gets are: Z � � z z + x 

S (z) = 2 f (x) F (x) 1 − dx 
2α Z z Z 1−α y − x 

+ f (x) f (y) dydx 
2α zZ 1−α � � 

z + x 
+2 f (x) (1 − F (x)) dx 

2z 

where the first integral is the expected payoff when party A’s x and 
party B’s y are located to the left of party C’s z, WLOG the second 
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integral corresponds to the case where party C’s z is in between of 
party A’s x and party B’s y, and the last integral is the expected 
payoff when party A’s x and party B’s y are located to the right of 
party C’s z. 

Then, taking the differential of the expression above we get Z z∂S (z) 
= 2f (z) F (z) (1 − z) − f (x) F (x) dx 

∂z αZ 1−α Z z 

+f (z) f (y) (y − x) dy − f (z) f (x) (z − x) dx 
z αZ 1−α 

−2zf (z) (1 − F (z)) + f (x) (1 − F (x)) dx 
z 

Using the fact that Z 
f (x) F (x) dx =

1 
F 2 (x)

2 Z 1−α 1 
xf (x) dx = 

2α 

we can rewrite the expression above as � � � � � � �� 
∂S (z) 1 1 1 

= − F (z) + f (z) z − z − 2 − F (z)
∂z 2 2 2 

∂S(z)For this to be a mixed strategy equilibrium we must have ∂z = 0, 
for every z ∈ [α, 1 − α] . That is, he is indifferent. 

Define 
1 − F (z) h (z) − f (z)2h (z) = , h0 (z) = 1 1− z − z2 2 

Then we have � � 
∂S (z) 1 

= 0 ⇔ h0 (2h − z) − z = 2h (h − 2)
∂z 2 

which yields � �−4 

h3 (h − 2) = K 
1 − z 
2 
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where K is a constant. Take K = 0, we have 

1 − F (z)2h = 2 = 1 − z2 

which implies � � 
1 

F (z) = 2 z − 
4 

For this to be a CDF we need F (α) = 0 ⇔ α = 1/4. We can check, 
F (1 − α) = 1. 

Finally we need to show that S (z) < S∗ ∀z ∈/ [1/4, 3/4] where S∗ is 
the share they get in equilibrium (equal to the share of playing any of 
the z in the support) 

Z 3/4 � � 
z + x 

S (z) = 2 f (x) (1 − F (x)) dx 
21/4 Z 3/4 

= const + z f (x) (1 − F (x)) dx 
1/4 

since f (x) > 0 ∀x, and (1 − F (x)) > 0 ∀x, this is increasing in z 
which implies S (1/4) > S (z) ∀z < 1/4. 

Similarly, take z > 3/4, then the share of party C is: Z 3/4 � � 
z + x 

S (z) = 2 f (x) (1 − F (x)) 1 − dx 
21/4 Z 3/4 

= const − z f (x) (1 − F (x)) dx 
1/4 

hence the share for values greater than the upper end of the support 
is lower than the equilibrium share. 

Then, playing a mixed strategy f ∼ U [1/4, 3/4] is a symmetric mixed 
strategy equilibrium of the game. 

Question 4: 
Consider the following one-period economy populated by a mass 1 of 

agents. A fraction λ of these agents are capitalists, each owning capital k. 
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The remainder have only human capital, with human capital distribution 
F (h). Output is produced in competitive markets, with aggregate production 
function 

= K1−αHαY , 

where uppercase letters denote total supplies. Assume that factor markets 
are competitive and denote the market clearing rental price of capital by r 
and that of human capital by w. 

1. Suppose that agents vote over a linear income tax, τ . Because of tax 
distortions, total tax revenue is � Z � 

T ax = (τ − v (τ )) λrk + (1 − λ) w hdF (h) 

where v (τ) is strictly increasing and convex, with v (0) = v0 (0) = 0 
and v0 (1) = ∞ (why are these conditions useful?). Tax revenues are 
redistributed lump sum. Find the ideal tax rate for each agent. Find 
conditions under which preferences are single peaked, and determine 
the equilibrium tax rate. How does the equilibrium tax rate change 
when k increases? How does it change when λ increases? Explain. 

For a capitalist, the utility over tax rate τ ∈ [0, 1] is: 

uk(τ) := (1 − τ )rk + (τ − v(τ))Y 

Note that since v(.) is convex, uk(τ) is concave – which immediately 
establishes that capitalists have single-peaked preferences over τ . The 
bliss point (i.e. the most preferred tax rate) for a capitalist is the value 
of τ ∈ [0, 1] which maximizes uk(τ): 

τ ∗ := arg max uk(τ)k 
τ ∈[0,1] 

To find it, take the first order condition: 

∂uk(τ) 
= Y − rk − v 0(τ )Y 

∂τ 

Realize that we have two possible cases: 

• If Y − rk ≤ 0, then uk(τ ) is decreasing everywhere and τ∗ = 0. k 
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• If Y − rk > 0, then uk(τ ) is increasing in τ = 0, so we have 
τk 
∗ > 0. Moreover, since limτ →1 v

0(τ) = ∞, we know we must 
have τk 

∗ < 1. We conclude that we must have an interior solution 
given by: � � 

rk 
τ ∗ = v 0−1 1 −k Y 

For notational simplicity, let g(x) := v0( − 1)(x). One crucial thing to 
note here is that, since v(.) is a convex function, v0(.) is increasing and 
so is g(.). 

= K1−αHαNow, we have a bunch of simplifications. Using (i) that Y , 
(ii) that the output is produced in competitive markets (so that r = 
MPK = (1 − α)K−αHα), and (iii) that K = λk, one can show that: 

• Y − rk ≤ 0 ⇔ λ ≤ 1 − α 

• 1 − rk 
Y = 1 − 1−λ

α 

To sum, all capitalists have the same optimal tax rate given by: (
0, if λ ≤ 1 − α 

τ ∗ = � �k 
1 − 1−αg , if λ > 1 − αλ 

A couple of observations about the most preferred tax rate of a capi-
talist: 

(a) It is equal to zero if λ ≤ 1 − α. Heuristically, λ is the popula-
tion share of capitalists and 1 − α is the share of national income 
distributed among the capitalists (a virtue of Cobb-Douglas pro-
duction function). If there are fewer capitalists compared to the 
total income of capitalists, then capitalists are richer and don’t 
want any redistribution. 

(b) It is (weakly) increasing in λ. Again heuristically, if there are 
more capitalists around, there is less income per capitalists, so 
they demand more redistribution. 

(c) It doesn’t depend on k – I’d say that this is also a virtue of Cobb-
Douglas production function: it adjusts factor prices nicely, so 
that capitalists are neutral towards having more or less capital. 
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Now, the same exercise for workers (holders of human capital). For a 
worker with human capital h, the utility over tax rate τ ∈ [0, 1] is: 

uh(τ) := (1 − τ )wh + (τ − v(τ))Y 

Once again, convexity of v(.) guarantees having single-peaked prefer-
ences over τ . The bliss point is: 

τh 
∗ := arg max uh(τ ) 

τ ∈[0,1] 

And the first order condition is: 

∂uh(τ) 
= Y − wh − v 0(τ )Y 

∂τ 

Once again, we have two possible cases, and making the substitutions 
along the same line gives us a simplified version: (

0, if h ≥ H 

τ ∗ α= � �h 
1 − αh g , if h < H 

H α R 
where, for the sake of closure, note that H = (1 − λ) hdF (h). 

Some observations again: 

(a) Unlike capitalists’, a worker’s most preferred tax rate depends 
on h. This is simply because workers have heterogeneous human 
capital levels – consequently, a worker should now take into ac-
count how she fares compared to the average human capital in 
the society, H. 

H(b) Once again, the bliss point is zero if h ≥ α . Heuristically, a 
worker with a higher h is richer, and she doesn’t want redistribu-
tion if she is sufficiently rich compared to other workers.6 

(c) (Keeping H constant) the bliss point is decreasing in h. The 
heuristics is the same: a richer worker demands less redistribu-
tion. 

6It may be also useful to note that if each worker have the same human capital level 
h, this would reduce to: 1 − γ ≤ α, much similar to the case with capitalists. 
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(d) It is (weakly) decreasing in λ. The intuition for this is similar 
to the same comparative statics with respect to capitalists, but 
it’s less meaningful: most because when λ changes the “median” 
worker changes as well. 

(e) It doesn’t depend on k, for the same reasons. 

Now, let’s consider the equilibrium tax rate. We have already argued 
that the preferences are single-peaked, and by Median Voter Theo-
rem, we know there is a Condorcet winner, given by the bliss point 
of the median individual (when they’re ranked according to their bliss 
points). There are several cases: 

• If λ > 1 , capitalists are the majority and the median voter will 2 
be a a capitalist. In this case, 

– If λ ≤ 1 − α, τ∗ = 0. This is the case where capitalists are 
a crowded group, but also their share of national income is 
sufficiently large so they don’t want any redistribution. � � 

– If λ > 1 − α, τ∗ = g 1 − 1−α ∈ (0, 1).λ 

• If λ < 1 , workers are the majority. In this case, 2 

– If λ ≤ 1 − α, 

∗ If λ+(1−λ)(1−F (H )) ≥ 1 , then τ∗ = 0. This is the case α 2 
where capitalists still don’t want any taxes, and they find 
a sizeable support from high-skilled workers and form a 
“coalition” to have zero taxes. 

1∗ If λ +(1− λ)(1 − F (H )) < , then find h1 which satisfies: α 2 Z h1 1 
(1 − λ) dF (h) = 

20 � � 
1 − αh1We have: τ ∗ = g ∈ (0, 1).H 

– If λ > 1 − α, then find h2 which satisfies: Z ∞ 1 
(1 − λ) dF (h) = 

2h2 � � � � 
∗ If g 1 − 1−α ≤ τ∗ , then τ∗ = g 1 − 1−α ∈ (0, 1).λ h2 λ� � 
∗ If g 1 − 1−α > τ∗ , then τ∗ = τ∗ .λ h2 h2 

24 



Finally, comparative statics. Note that in any case, the equilibrium 
tax rate does not depend on k. What about changes in 
lambda? Suppose we change λ to λ0 with λ0 > λ. 

• If λ > 12 , 

– If λ ≤ 1 − α, τ∗ begins at 0. If λ0 ≤ 1 − α it remains at zero, 
otherwise it increases to a strictly positive value. 

– If λ > 1 − α, τ∗ increases. 

• If λ < 12 , 

– If λ ≤ 1 − α, 

∗ If λ+(1−λ)(1−F (H )) ≥ 2
1 , τ∗ starts at zero and remains α 

at zero. 
1∗ If λ+(1−λ)(1−F (H )) < , then the effect of an increase α 2 

in λ is ambiguous. We know that each worker prefers a 
lower tax rate than they did before now, but also the new 
median voter will have lower skill – which one prevails will 
depend on F (.) and v(.). 

– If λ > 1 − α, once again, the effect on τ∗ will depend on F (.) 
and v(.). 

2. Suppose now that agents vote over capital and labor income taxes, τk 

and τh, with corresponding costs v (τk) and v (τh), so that tax revenues 
are Z 

T ax = (τk − v (τk)) λrk + (τh − v (τh)) (1 − λ) w hdF (h) 

Determine ideal tax rates for each agent. Suppose that λ < 1/2. Does 
a voting equilibrium exist? Explain. How does it change when λ in-
creases? Explain why this would be different from the case with only 
one tax instrument? 

The policy space right now is 2-dimensional: Indeed, it is the unit 
square [0, 1] × [0, 1], where, given a policy (τ1, τ2) ∈ [0, 1]2 , τ1 is the 
tax on capitalists and τ2 is the tax on workers. 

I’ll not go over the calculations again – they’re really similar to those in 
part 1. At the end of the day, it turns out each agent has single-peaked 
preferences on each dimension. A capitalist’s bliss points are: 

τ ∗ = (0, g(1))k 
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That is, a capitalist prefers zero taxes on capital income very high 
taxes on labor income (so high that the marginal distortion equals the 
gain from labor income tax). For a worker with human capital h, bliss 
points are: 

τh 
∗ = (g(1), q(h)) 

where (
0, if h ≥ H 

q(h) := 
g(1 − H

h ), if h < H 

That is, a worker always prefers high taxes on capital income. Her 
most preferred labor income tax depends on her skill level vis-a-vis 
the average skill level: she prefers lower taxes if she is more skilled, 
and may prefer zero labor taxes if she is sufficiently high-skilled. 

The issue with this case is that: even though the preferences are single-
peaked with respect to each dimension, because the policy space is 
multidimensional, the Median Voter Theorem may not hold and we 

1may not have a Condorcet winner. To see this, assume that λ < 2 . 
Consider the most preferred labor income tax of the “median-skilled” 
worker hm which satisfies: Z ∞ 1 

(1 − λ) dF (h) = 
hm 2 

Realize that, for any τ2, the policy (g(1), τ2) beats any other policy 
(τ1, τ2) with τ1 6 g(1). Therefore, if we have a Condorcet winner, it = 
must be of the form (g(1), τ2). Also, the policy (g(1), q(hm)) beats 
any policy (g(1), τ2) with τ2 6 q(hm).= This means that if we have 
a Condorcet winner, it must be (g(1), q(hm)) – the bliss point of the 
“median” worker. 

But now, consider the policy (g(1) − ε, q(hm) − ε). For ε small enough, 
each capitalist and each worker with h > hm prefers this over (g(1), q(hm)). 
This means we have a Condorcet cycle! 

Now of course, if λ increases enough so that λ > 1 , this wouldn’t be a 2 
problem – in that case, (0, g(1)) is the Condorcet winner. 

3. In this model with two taxes, now suppose that agents first vote over the 
capital income tax, and then taking the capital income tax as given, 
they vote on the labor income tax. Does a voting equilibrium exist? 
Explain. If an equilibrium exists, how does the equilibrium tax rate 
change when k increases? How does it change when λ increases? 
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Voting in two stages save us from the non-existence of an equilib-
rium, because now we can consider two separate unidimensional policy 
spaces. 

• If λ ≥ 1 
2 , (τ1 

∗, τ2 
∗) = (0, g(1)) (which was the Condorcet winner 

anyway) will still be implemented. The equilibrium tax rate does 
not change with k or λ. 

• λ < 1 
2 , the median voter is a worker and we’ll have: (τ1 

∗, τ2 
∗) = 

(g(1), q(hm)). The equilibrium tax rates are not affected by k, 
but now a change in λ affects the tax rate. If λ rises sufficiently 
high that the new median voter is a capitalist, we go to the case 
above. Otherwise, an effect of an increase in λ is ambiguous: it 
depends on F (.) and v(.), for reasons discussed in part 1. 
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