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Question 1: 
Consider the all-pay auction model of lobbying. 
Suppose there are N lobbies competing to get the politician’s support to 

have the legislation in their favor. Assume that the value of having legislation 
in one’s favor is worth x̄ for each lobby. Each lobby makes a contribution 
the politician before the legislation is decided, and the contribution is non-
refundable. The lobbies don’t observe other lobbies’ contributions before the 
legislation passes. The politician passes the legislation in favor of the lobby 
which pays the highest contribution. (If there are multiple lobbies which pay 
the highest contribution, the politician decides randomly.) If a lobby pays x 
and gets the legislation in its favor, then its payoff is x̄− x. If the legislation 
is not in one’s favor, then the payoff is −x. For simplicity, normalize x̄ = 1. 

1. Assume N = 2. Does this game have any pure strategy Nash Equilib-
rium? Explain. 

Claim 1. This game does not admit any pure strategy Nash Equilib-
rium. 

Proof. For expositional simplicity, let the set of lobbies be {i, j} and, 
to get a contradiction, let (si, sj ) ∈ Si × Sj be pure strategy Nash 
Equilibrium. We’ll cover two cases: 

1 
2(a) si = sj. In this case, i’s payoff is: ui(si, sj ) = − si. Yet, lobby i 

can deviate to playing s0 i = si + ε for ε ∈ (0, 1 
2). This would give 

0 
i, sj ) = 1 − s

thus it has a strictly profitable deviation. Therefore, this cannot 
be a Nash Equilibrium. 

1 

0a payoff of ui(s = 1 − si − ε > ui(si, sj ) to lobby i,i 



(b) 6 Without loss of generality, assume si > sj . In this case, si = sj. 
i’s payoff is: ui(si, sj ) = 1−si. Yet, lobby i can deviate to playing 
0 0 0s ∈ (sj , si) and get a payoff of ui(si, sj ) = 1−si = 1− > ui(si, sj )i 
to Player i, thus she has a strictly profitable deviation. Therefore, 
this cannot be a Nash Equilibrium. 

The argument is easily generalizable to the N > 2 case. 

2. Assume N = 2. Find a symmetric mixed strategy equilibrium where 
both lobbies randomize over possible contributions according to a c.d.f. 
F (x). 

Again, for expositional simplicity, the set of lobbies be I = {i, j}. Let 
i mix according to the c.d.f. Fi : R+ → [0, 1], and similarly for j. 

Claim 2. The following is a mixed strategy equilibrium of this game: 
Fi = Fj = F , where 

F (x) = 

⎧ ⎪⎨ ⎪⎩ 

0, if x < 0; 

x, if x ∈ [0, 1]; 

1, if x > 1. 

In other words, the strategy profile where each lobby independently 
mixes according to the uniform distribution over [0, 1] is a Nash Equi-
librium. 

Proof. We need to show two things: 

(a) Given sj ∼ Fj , i is indifferent between any pure strategy in [0, 1]. 

(b) Given sj ∼ Fj , i does not have a strictly profitable deviation: 
anything outside [0, 1] gives a (weakly) lower payoff than those in 
[0, 1]. 

The symmetry of the game then ensures that this is a Nash Equilib-
rium. 

• To show the first point, we need to demonstrate that Esj ∼Fj [ui(si, sj )] = 
0 0Esj ∼Fj [ui(si, sj )] for each si, si ∈ [0, 1]. Begin by remembering 

that: 

1
Esj ∼Fj [ui(si, sj )] = Psj ∼Fj {sj < si} + Psj ∼Fj {sj = si} − si

2 
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But Psj ∼Fj {sj = x} = 0 for each x ∈ R+, because the uniform 
distribution is atomless. Also, Psj ∼Fj {sj < x} = Fj (x) = x for 
each x ∈ [0, 1], so that it simplifies to: 

Esj ∼Fj [ui(si, sj )] = Fj (si) − si = si − si = 0 

0for each si ∈ [0, 1]. It follows that Esj ∼Fj [ui(si, sj )] = Esj ∼Fj [ui(si, sj )] = 
0 for each si, s0 ∈ [0, 1].i 

• To show the second point, we need to demonstrate that Esj ∼Fj [ui(si, sj )] ≤ 
0 0Esj ∼Fj [ui(si, sj )] for each si ∈ Si \ [0, 1] and s ∈ [0, 1]. By the i 

0first point, we already know that Esj ∼Fj [ui(si, sj )] = 0 for each 
s0 ∈ [0, 1], so we just need to show: i 

Esj ∼Fj [ui(si, sj )] ≤ 0 for each si > 1. 

But this is easy to see, because given sj ∼ Fj , any si > 1 wins 
the auction for sure, so the payoff of lobby i is: 1 − si < 0. The 
result follows. 

3. Now, consider a general case where N can be any integer. Find a 
symmetric mixed strategy equilibrium where each lobby (independently) 
randomizes over possible contributions according to a c.d.f. F (x). 

Let the set of lobbies be I, with |I| = N . 

Claim 3. The following is a mixed strategy equilibrium of this game: 
Fi = F for each i ∈ I, where 

F (x) = 

⎧ ⎪⎨ ⎪⎩ 

0, if x < 0; 
1 

xN−1 , if x ∈ [0, 1]; 

1, if x > 1. 

Proof. Once again, we need to show two things. For lobby i ∈ I, 

(a) Given sj ∼ Fj for each j ∈ I \ {i}, i is indifferent between any 
pure strategy in [0, 1]. 

(b) Given sj ∼ Fj for each j ∈ I \ {i}, i does not have a strictly 
profitable deviation: anything outside [0, 1] gives a (weakly) lower 
payoff than those in [0, 1]. 

The symmetry of the game then ensures that this is a Nash Equilib-
rium. 
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• To show the first point, we need to demonstrate that Es−i∼F−i [ui(si, s−i)] = 
0 0 
i, s−i)] for each si, s ∈ [0, 1].Es−i∼F−i [ui(s i 

Once again, since the hypothesized distribution is atomless, Psj ∼Fj {sj = 
x} = 0 for each x ∈ R+ and j ∈ I \ {i}. Also, the independent 
mixing ensures that Ps−i∼F−i {sj < x for each j ∈ I \ {i}} = Q Q

j∈I\{i} Psj ∼Fj {sj < x} = j∈I\{i} Fj (x) for each x ∈ [0, 1], so 
that it simplifies to: 

Y 1 
N−1Esj ∼Fj [ui(si, sj )] = Fj (si)−si = (Fj (si))

N−1−si = (s )I−1−si = si−si = 0 i 
j∈I\{i} 

for each si ∈ [0, 1]. The first point follows. 

• To show the second point, we need to demonstrate that Es−i∼F−i [ui(si, s−i)] ≤ 
0 0[ui(si, s−i)] for each si ∈ Si \ [0, 1] and s ∈ [0, 1]. ByEs−i∼F−i i 

the first point, we already know that Es−i∼F−i [ui(si
0 , s−i)] = 0 for 

each s0 ∈ [0, 1], so we just need to show: i 

Esj ∼F−i [ui(si, s−i)] ≤ 0 for each si > 1. 
But this is easy to see, because given sj ∼ Fj for j ∈ I \ {i}, 
any si > 1 wins the auction for sure, so the payoff of Player i is: 
1 − si < 0. The result follows. 

4. How do the equilibrium distributions change with N? Can you suggest 
an economic intuition on why the equilibrium changes in this way? 
Calculate the expected total contribution that politician receives. How 
does it change with N? Are more lobbies better or worse for the politi-
cian? What if the politician is risk averse/risk loving? 

• The equilibrium distribution for an individual contribution when 
there are N lobbies First Order Stochastically Dominates the 
distribution when there are N 0 > N lobbies. This intuitively 
means that higher individual contributions are less likely when 
there are more lobbies. The reason being: with more lobbies, 
each lobby’s bid is more likely to be overbid by some other lobby. 
But since the payment is “certain” regardless of whether one 
wins or not, this means that there are smaller incentives to bid 
higher. The result is an equilibrium distribution with smaller 
contributions. 
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• The expected total contribution remains constant at 1, so a risk-
neutral politician is indifferent between fewer or more lobbies. We 
answer does change when the politician has different attitudes to-
wards risk, though. It seems like the equilibrium distribution for 
total contributions when there are N lobbies is a mean-preserving 
spread of the distribution when there are N > N 0 lobbies. This 
means that a risk-loving politician prefers more lobbies, whereas 
a risk-averse politician prefers less lobbies. Heuristically, with 
more lobbies, there’s a teeny-tiny probability of receiving a total 
contribution of N (1 from each lobby) – a risk-loving politician 
likes to take the risk of having this event even though it’s not 
much likely. 

Question 2: 
Assume that there is a population of voters whose measure is normalized 

to 1 (indexed by v ∈ [0, 1]). Everyone has 1 unit of resources and have linear 
utility over goods. 

There are 2 parties, and they make binding promises to voters concerning 
their policy conditional on winning the election. A party can: 

• Offer different taxes and transfers to different voters (it is possible to 
target resources to individuals), or, 

• Offer to provide a public good (to all voters). The public good costs 
1 unit of resources per head (i.e. requires taxing everyone fully), and 
generates a utility G for each voter. 

Each voter votes for the party who promises her the greatest utility. Par-
ties maximize their expected vote share. 

1. Suppose G > 2. Show that the only equilibrium is one with both parties 
offering public goods. 

Begin by observing that, by standard arguments, in any equilibrium 
both parties must receive a vote share of 1 

2 (otherwise the losing party 
can simply imitate the strategy of the winning party and secure a vote 
share of 1 

2). 

We begin by asserting that a party cannot offer redistribution in equi-
librium. Because the total resources in the economy is 1, when a party 
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offers redistribution, it can offer a payoff of at least G to at most 1 
G 

people. Consequently, at least 1 − G 
1 people receive a payoff less than 

G under any redistribution scheme. But then the other party secures 
a vote share of 1 − G 

1 > 1 
2 by offering public good. By the argument 

in the previous paragraph, then, we cannot have an equilibrium when 
redistribution is offered with nonzero probability. 

It is clear, on the other hand, both parties offering public good with 
probability 1 in equilibrium. In this equilibrium both parties get a vote 
share of 1 

2 . If a party deviates to offering redistribution, it can offer a 
payoff of at least G to at most G 

1 people. Since G > 2, 1 
G <

1 
2 , implying 

that this cannot be a profitable deviation. We conclude that both 
parties offering public goods is an equilibrium. Combined with the 
discussion in the above paragraph, this is indeed the only equilibrium. 

2. Now suppose G < 2. Show that there is not an equilibrium in which a 
party offers the public good with probability one. 

Suppose, to get a contradiction, that one of the parties offers the public 
good with probability one. As discussed above, each party must get 
1 
2 of the votes in any equilibrium. But then the party not offering the 
public good can offer a redistribution scheme which yields G + � < 2 
to G+� 

1 voters. This would secure a vote share of 1 
G+� >

1 
2 , implying 

that we have a strictly profitable deviation. We conclude that we 
cannot have an equilibrium in which a party offers the public good 
with probability one. 

3. Suppose G < 2. Show that there is not an equilibrium in which a party 
offers a transfer scheme in pure strategies, either. Conclude that there 
is no pure strategy equilibrium. 

We know, by the previous part, that when G < 2 we must have redis-
tribution being offered with nonzero probability. We now show that 
the redistribution cannot be in the form of a pure strategy – i.e. a 
party cannot offer a non-random redistribution scheme. 

Suppose, to get a contradiction, that one of the parties (say, Party i) 
offers a non-random redistribution scheme in equilibrium: Z 

Φi : [0, 1] → [0, ∞) Φi(v)dv = 1 
v∈[0,1] 

Notationwise, Φi(v) denotes the payoff of voter v under the offered 
redistribution scheme (i.e. it is the initial unit of resources v has 
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plus/minus the transfers). Given Φi, the other party (say, Party j) 
can offer: 

Φj : [0, 1] → [0, ∞) 

with 
Φj (v) = 0 for v ∈ V ∗ 

where V ∗ is a set of measure � of people people for whom Φi(v) > 0, 
and R 

Φi(ṽ)ṽ∈V ∗ 
Φj (v) = Φi(v) + for v /∈ V ∗ 

1 − � 

Heuristically, Party j can offer zero to an infinitesimally small set of 
people and redistribute their payoffs among the others, giving Party 
j a vote share of 1 − �. This would imply that Party j has a strictly 
profitable deviation. We conclude that we cannot have an equilibrium 
in which a party offers a transfer scheme in pure strategies. Conse-
quently, when G < 2, there is no pure strategy equilibrium. 

4. Now, consider the case G < 1. Show that none of the parties offer 
public good in equilibrium. Find a symmetric mixed strategy equilib-
rium where each party offers each voter v a transfer drawn from a 
distribution with c.d.f. F (.). 

When G < 1, public good is not offered in equilibrium because it is 
inefficient : if one of the parties offers the public good (giving everyone 
a payoff of G), the other party would secure a win by offering no 
transfers (which would give everyone a payoff of 1). We conclude that 
both parties must offer redistribution and, following the previous part, 
the redistribution scheme must be random. 

As suggested in the question, we’re looking for a symmetric mixed 
strategy equilibrium where each voter v receives an offer drawn from 
cdf F (.) (note that there is no v subscript) and both parties use the 
same strategy (Fi(.) = Fj (.) = F (.)). Here, once again, the offer x 
given to a voter v represents to be the net payoff (which contains the 
initial unit of endowment and transfers). Consequently, any policy 
F (.) offered by any party must satisfy the resource constraint: Z ∞ 

xf(x)dx = 1 
0 

We continue with the following claim. 
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Claim 4. Suppose G < 1. The following is a mixed strategy equilib-
rium of this game: Fi = Fj = F , where ⎧ ⎪⎨0, if x < 0; 

xF (x) = , if x ∈ [0, 2];2⎪⎩ 
1, if x > 2. 

In other words, the strategy profile where each party independently 
mixes according to the uniform distribution over [0, 2] is a Nash Equi-
librium. 

It is pretty straightforward to verify that this is an equilibrium, and 
the argument is similar to the one made in Question 1. (This is also 
the unique symmetric mixed strategy equilibrium, but it is beyond the 
scope of this question – see Myerson (1993) for a proof.) 

To verify that this is an equilibrium, assume that Party i uniformly 
mixes in [0, 2] and consider j’s best response. If Party j offers a payoff 
x ∈ R+ to a voter v, it gets v’s vote with probability F (x). Conse-
quently, if j adopts a distribution Fj (.), its expected vote share is: 

ZZ x x x 
F (x)fj (x)dx ≤ fj (x)dx 

0R0 2 

0
x 
xfj (x)dx 

2 2 
1 

= = 

2Where the first inequality follows because F (x) ≤ x 

the last equality follows due to the resource constraint. But this im-
for all x ∈ R+, and 

plies that Party j cannot win more than 1 
2 of the votes using any strat-

egy when i is uniformly mixing in [0, 2]. Clearly, using Fj (.) = F (.) 
(mimicking i’s strategy) yields an expected vote share of 1 

2 ; therefore, 
it is a best response and both parties using uniform distribution over 
[0, 2] is an equilibrium. 

5. Now, consider the case 1 < G < 2. Show that the public good must 
be provided with positive probability in equilibrium. Find a symmetric 
mixed strategy equilibrium where each party offers the public good with 
probability β, offers transfers with probability 1 − β, and if it offers 
transfers, each voter v is offered a transfer drawn from a distribution 
with c.d.f. F (.). 
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We begin by showing that the public good must be provided with 
positive probability in equilibrium. Suppose, to the contrary, that both 
parties offer redistribution with probability one. In any symmetric 
equilibrium, the strategies specified in the previous part must be used, 
so both parties must be using the uniform distribution over [0, 2] and 
getting half of the share. Nevertheless, each party has the alternative 
of offering the public good and securing G of the votes when the other2 
party is using the aforementioned randomization. When G > 1, this is 
a strictly profitable deviation, therefore implying that we cannot have 
such an equilibrium. 

Claim 5. Suppose 1 < G < 2. The following is a mixed strategy equi-
librium of this game: each party offers the public good with probability 

βi = βj = G − 1 

and, conditional on offering redistribution, both parties use Fi(.) = 
Fj (.) = F (.), where 

F (x) = 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

0, if x < 0; 
x if x ∈ [0, 2 − G];2G , 
2−G , if x ∈ [2 − G, G];2G 
x+2−2G , if x ∈ [G, 2];2G 

1, if x > 2. 

In other words, each party uses a distribution with a hole in [2 − G, G] 
and otherwise mixes uniformly. 

For a proof of this (and for the more general case with N parties), I 
encourage you to read Lizzeri and Persico (2005). (The whole point of 
this question was to induce you into reading the paper and make sure 
that you follow the argument!) 

6. For the case 1 < G < 2, what is the probability that the public good is 
offered in equilibrium? Comment on what features of this model lead 
to the inefficiency result. 

As derived in the previous part, the probability that a party offers the 
public good is G − 1. This is increasing in G –good news, since public 
goods are efficient in this region and the probability of public good 
being offered is increasing in its efficiency. Still, there is a certain 
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probability 2 − G > 0 of offering redistribution, which is inefficient 
from a utilitarian welfare perspective. 

There are obviously many reasons why we end up in inefficiency result 
– this is meant to be an open ended question. Arguably the most 
important feature is the possibility of targeted transfers, which, as 
we’ve seen in class, leads to inefficiencies more often than not. 

Question 3: 
Consider the following model: There are two periods t ∈ {1, 2}. The 

discount factor is δ ∈ (0, 1]. 
A politician has a (persistent) type i ∈ {c, nc}, where c is corrupt and 

nc is noncorrupt. Each politician’s type is drawn independently from an 
distribution with Pr{i = nc} = π ∈ (0, 1). 

In each period t ∈ {1, 2}, there is a state of the world st ∈ {0, 1}, privately 
observed by the politician. Each period, the state of the world is drawn 

1independently from a distribution with Pr{st = 1} = 2 . 
In each period t ∈ {1, 2}, the elected politician of type i observes the state 

st and picks a policy et(st, i) ∈ {0, 1}. The citizens have a payoff of (
V, if et = st 

ut(st, et) = 
0, if et =6 st 

Each period, a non-corrupt politician receives a payoff of 

nc ut (st, et) = ut(st, et) + 1{inofficeatperiodt}W 

Where W > 0 is the “ego rents” from being in the office in period t. 
A corrupt politician’s per period payoff is: (

if et = 0 c 1{inofficeatperiodt}W, 
u (st, et) = t 

1{inofficeatperiodt}(rt + W ) if et = 1 

where rt is the “private benefit” from setting e = 1. Each period, rt is drawn 
independently from a distribution G(r) with mean µ and support [0, R]. The 
timing of the game is as follows: 

i. An incumbent politician is in the office. The incumbent’s type is drawn, 
and she privately observes her type. 

ii. s1 is drawn and observed by the politician. 
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iii. If the incumbent is corrupt, r1 is drawn and observed by the politician. 

iv. The incumbent chooses e1, and it is observed by the citizens. 

v. Citizens decide whether to keep the incumbent or elect a new politician. 
If they elect a new politician, her type is drawn randomly from the 
same distribution. 

vi. Citizens observe their payoffs from period 1. 

vii. In the second period, s2 is drawn and observed by the elected politician, 
(if she is corrupt) r2 is drawn and observed by the politician, and the 
elected politician chooses e2. Payoffs are realized. 

1. What does this timing imply for the role of retrospective voting in this 
model? Is this timing a realistic assumption? 

Retrospective voting means that voters simply look at their payoffs 
and condition their voting decisions on their payoffs. The timing of 
this game effectively rules out any possibility of retrospective voting, 
because it assumes that the payoffs are observed after the election. 
This is a crucial assumption for this model – without this timing, the 
results would not hold. 

Is it realistic? It depends. In many contexts, politicians make long-
term decisions whose impacts are not yet observed in the election pe-
riod, so this may be a good fit for those contexts. It may also be 
the case that the voters observe only a noisy signal of their payoffs 
(as in the “populism” model we covered in class) – this model is an 
extreme version where the noise is just too much and eats up all the 
informativeness of the signal. 

2. Find a Perfect Bayesian Nash Equilibrium of the game where 

• A non-corrupt incumbent picks e1 = 0 regardless of s1, 

• A corrupt incumbent picks e1 = 1 only if r1 is sufficiently high, 
and, 

• An incumbent is re-elected only if e1 = 0. 

This should be a fairly standard analysis by now, so I’ll be brief. If you 
need a step-by-step derivation, you can check Section 3.4.3 of Besley 
(2006) or Recitation 4 notes (which cover a fairly similar model with 
different timing). 
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We’ll check several optimality conditions for different agents in the 
economy, as well as the Bayesian updating whenever relevant. 

• Assume that an incumbent is re-elected if and only if e1 = 0 (the 
optimality of this behavior by voters will be verified later). 

– A corrupt incumbent with rent r1 will find it optimal to 
pick e1 = 0 if and only if 

r1 ≤ δ(W + µ) (1) 

where the left-hand side is the “cost” of picking e1 = 0 and 
the right-hand side is the gains from picking e1 = 1 (and 
remaining in the office). 

– When state is s1 = 0, a non-corrupt incumbent does not 
face any trade-off: she does the best for the voters and get 
re-elected anyway. She always picks e1 = 0. 

– When state is s1 = 1, a non-corrupt incumbent faces a 
trade-off, though. She finds it optimal to pick e1 = 0 if and 
only if 

1 
V + δV (π + (1 − π) ) ≤ δ(W + V ) (2)

2
where the left-hand side is the expected payoff of picking 
e1 = 1 (thus getting a payoff of V today, getting kicked 
out of the office and getting V in the next period only if 
the replacing politician chooses the correct action) and the 
right-hand side is the gain from picking e1 = 1 (foregoing 
the payoff for today, but getting ego rents and a payoff of V 
tomorrow). 

• Assume that a a non-corrupt incumbent always chooses e1 = 0 
and a corrupt incumbent chooses e1 = 0 iff r1 ≤ δ(W + µ); 
therefore, the probability of a corrupt incumbent choosing e1 = 0 
is: G(δ(W + µ)). (The conditions for optimality of such behavior 
are already discussed.) 

– Bayes’ rule suggests that upon seeing e1 = 1, the voters im-
mediately realize that the incumbent is corrupt: 

Pr{i = nc|e1 = 1} = 0 

– Bayes’ rule also implies that the beliefs about the incum-
bent’s type upon seeing e1 = 0 is given by: 

π 
Pr{i = nc|e1 = 0} = (3)

π + (1 − π)G(δ(W + µ)) 
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• Taking the incumbents’ strategies as given, Bayesian voters re-
place the incumbent if and only if the expected payoff from re-
placing the incumbent is larger than keeping her: 

Pr{i = nc|e1} ≥ π 

where the left hand-side is the probability that the incumbent 
will work in voters’ interest in the second period, and the right 
hand-side is the probability that the replacing politician will favor 
the voters. 

– Since Pr{i = nc|e1 = 1} = 0 under incumbents’ strategies, 
this inequality is never satisfied, so replacing an incumbent 
who picks e1 = 1 is optimal. 

π– Since Pr{i = nc|e1 = 0} = under incum-π+(1−π)G(δ(W +µ)) 
bents’ strategies, this inequality is always satisfied, so re-
electing an incumbent who picks e1 = 0 is optimal. 

3. When does a corrupt incumbent choose e1 = 0? What is the ex ante 
probability of this event? How does it depend on W , µ and δ? 

We’ve provided a partial discussion for this above. Under the proposed 
equilibrium, a corrupt incumbent chooses e1 = 0 iff 

r1 ≤ δ(W + µ) 

The probability of this event is: 

G(δ(W + µ)) 

This probability is increasing in δ and W – if a corrupt incumbent 
values future more or if she cares about being in office more, then she 
foregoes the current rents more easily. 

It’s hard to say something definitive about µ, because we’re also chang-
ing G(.) once we vary µ. In general, if the corrupt politician expects 
higher rents in the future, she foregoes the current rents more easily. 

4. What is the condition on non-corrupt incumbent’s period one incen-
tives to sustain such an equilibrium? How does it depend on V , W , δ 
and π? Discuss. 

The condition is given in equation (2), which I’ll rewrite as: 

V δ 
W + V 

≤ 
1 + δ 1+2 

π 
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One thing is clear from this equation: we need W > 0 for this in-
equality to hold – the non-corrupt incumbent should also care about 
being in the office. In general, the more she cares about being in the 
office (higher W ), the easier it is to have an equilibrium where the 
non-corrupt politician panders to the voters to stay in the office. 

• This inequality is more difficult to satisfy with larger V . Heuris-
tically, when the disutility of taking the wrong action is higher, 
the non-corrupt politician is more less easily convinced to pander 
to the voters by choosing the “wrong” action. 

• This inequality is easier to satisfy when δ is higher: the more 
politician cares about the future, the more she cares about stay-
ing, so she panders to the voters. 

• This inequality is more difficult to satisfy when π is higher: when 
a non-corrupt politician expects the replacement to be non-corrupt 
with higher probability, she doesn’t worry much about being re-
placed, so she takes the “correct” action even though she knows 
she’ll be replaced. 

Question 4: 
Consider the the alternating-offers bargaining model of by Rubinstein 

(1982), which we covered in Lecture 11. We’ll denote Player 1’s share as 
x1 ∈ [0, 1] and Player 2’s share as x2 ∈ [0, 1], so that x1 + x2 = 1. 

(Warm-Up). First, consider the ultimatum bargaining game. Player 1 
moves first and offers x1 ∈ [0, 1]. After observing the offer, Player 2 either 
accepts (Y ) or rejects (N). If Player 2 accepts, the payoffs are (x1, 1 − x1). 
If she rejects, the game ends with payoffs (0, 0). Find the backward induction 
equilibria of this game. (For simplicity, you can assume that a player accepts 
an offer when she is indifferent between accepting and rejecting.) 

1. Now, take it one step further and assume there are two periods in 
which players can make offers. Once again, Player 1 begins by offering 
x1 ∈ [0, 1] and Player 2 either accepts (Y ) of rejects (N). If Player 2 
accepts, the payoffs are (x1, 1 − x1). If Player 2 rejects, then Player 
2 moves to offer x2 ∈ [0, 1]. In this case, Player 1 responds by either 
accepting (Y ) or rejecting (N). If Player 1 accepts, the payoffs are 
(δ(1 − x2), δx2), where δ ∈ (0, 1). If Player 1 rejects, then the game 
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ends with payoffs (0, 0). Find the backward induction equilibria of this 
game. 

2. Now, generalize the result to T ≥ 2 periods. Player 1 makes offers in 
odd periods and Player 2 makes offers in even periods. Receiving a 
share of xi in period t gives a payoff of δt−1xi for player i ∈ {1, 2}. 
Assuming T is even, find the payoff vectors in subgame perfect equi-
librium. 

3. What is the payoff vector if T is odd? 

4. Comparing the results in parts 3 and 4, you should be able to observe 
the phenomena called last-mover advantage and first-mover advan-
tage. Can you observe how they are reinforced/weakened as T → ∞ 
and δ → 1? Can you offer an economic intuition on why the changes 
occur that way? 

See the solutions in the supplementary document. This used to be a 
question for a class on game theory, so the solutions are more detailed. I 
didn’t expect you to be as rigorous as the solutions suggested. That being 
said, being more rigorous is always a dominant strategy! 
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