14.770-Fall 2017 Recitation 9 Notes

Arda Gitmez

(based on slides by M. Lowe)

December 1, 2017

Today:

- IO and Media:
 - Theory: Mullainathan and Shleifer (AER, 2005)
 - Empirics: Gentzkow and Shapiro (QJE, 2011)
 - Cool stuff you can do via text analysis
- Conflict and Media:
 - Yanagizawa-Drott (QJE, 2014)

Mullainathan and Shleifer (AER, 2005)

"The Market For News

A demand-side model of media bias

- Investigate effects of
 - Reader beliefs,
 - Reader heterogeneity, and,
 - Competition (monopoly vs. duopoly)

on equilibrium media bias.

• Builds on Hotelling model of product placement.

Surprising finding: "With biased readers, competition may even increase media bias."

- Readers want to learn $t \sim N(0, \nu_t)$
- Belief about t may be biased: $N(b, \nu_t)$
- Newspapers receive data $d = t + \epsilon$ where $\epsilon \sim N(0, \nu_{\epsilon})$
- They then report data with slant s so reported news is n = d + s

- Unbiased reader has utility $U_r = \bar{u} \chi s^2 P$ where P is price, s is slant
- Biased reader: $U_b = \bar{u} \chi s^2 \phi (n-b)^2 P$
 - $\phi > 0 \Rightarrow$ like to hear confirming news
 - A behavioral assumption, and a driving force

- **(**) Newspapers announce slanting strategy s(d)
- Newspapers announce price P
- 3 Readers buy paper if $P < \mathbb{E}_d [U(s(d))]$
- Paper observes signal d and reports n = d + s(d)
- If individual buys paper, read news and receive utility.

The cases considered:

- Homogeneous: all readers hold same beliefs b with precision p
- Heterogeneous: distributed uniformly between b_1 and b_2 with $b_1 < b_2, b_2 > 0$
- Monopoly vs. Duopoly

Bias is $\mathbb{E}_d\left[\left(n-d\right)^2\right]$ or $\int_i \mathbb{E}_d\left[\left(n_i-d\right)^2\right]$ in heterogeneous case

Just to fix ideas.

Proposition 1: Suppose readers are rational. Then, whether readers are homogeneous or heterogeneous, the monopolist does not slant and charges the same price:

$$s_{hom}^*=s_{het}^*=0,\ P_{hom}^*=P_{het}^*=ar{u}$$

In the duopolist case, papers do not slant and once again charge the same price:

$$s_{j,hom}^* = s_{j,het}^* = 0, \ P_{j,hom}^* = P_{j,het}^* = 0$$

The only effect of competition is to lower prices.

Proposition 2: A monopolist facing a homogeneous audience chooses

$$s_{hom}^{*}\left(d
ight) = rac{\phi}{\chi + \phi}\left(b - d
ight), \ P_{hom}^{*} = ar{u} - rac{\chi\phi}{\chi + \phi}\left[b^{2} +
u_{d}
ight]$$

given a condition on \bar{u} (needs to be large enough otherwise no news read). News reported is then

$$n = \frac{\phi}{\chi + \phi}b + \frac{\chi}{\chi + \phi}d$$

which is a convex combination of bias and data.

Proposition 3: There is an equilibrium with

$$s_{hom}^{*}\left(d
ight)=rac{\phi}{\chi+\phi}\left(b-d
ight),\ P_{hom}^{*}=0$$

i.e. with a homogeneous audience, competition is Bertrand-like – drives prices to zero, but slant unchanged. **Competition has no effect on slant** in this case.

- **Proposition 4:** Monopolist will cover whole market only if reader beliefs are not too dispersed.
- **Proposition 5:** Suppose duopolists choose linear slant strategies. All readers read the newspaper and each duopolist positions himself as far away from the other as possible. Reported news in this case is

$$n_j = d + s^*_{j,het}\left(d
ight) = rac{\phi}{\chi + \phi} rac{3}{2} b_j + rac{\chi}{\chi + \phi} d_j$$

Duopolists slant towards $\frac{3}{2}b_j$, points that are *more extreme* than the most extreme readers in the population!

• Why? Product differentiation allows them to charge higher prices.

- Analogous to standard Hotelling result.
 - Monopolist caters to both audiences unless they are too far apart, while duopolists maximally differentiate.
 - But in standard model, constrained to choose within preference distribution. Here, can choose positions outside distribution of reader bias and in equilibrium choose very extreme positions.
- Key reason: the more differentiated the duopolists, the higher prices can be charged.

Gentzkow and Shapiro (QJE, 2001)

"Idological Segregation Online and Offline"

Big Picture Question: What Drives Political Polarization?

© K7MOA.com All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Arda Gitmez (MIT)

- Ideological Segregation in Media
 - Media is slanted (as we've seen)
 - Only consume media that confirms prior biases (as we've seen)
 - Prior bias becomes stronger and stronger
- Could be that new media technology leads to more segregation?

Is online news consumption more ideologically segregated than offline?

- Internet reduces cost of acquiring information from multiple sources
- ... but increasing number of sources makes it easier to segregate ideologically
 - So effect is ambiguous.

- Measure segregation of an outlet using "isolation index" (taken from racial segregation literature)
- This equals average conservative exposure of conservatives minus average conservative exposure of liberals
 - If everyone reads/visits same newspaper/website, this will be zero
 - If conservatives only visit foxnews.com and liberals only visit nytimes.com this will be 100 p.p.

Measurement: Details

- *m* ∈ *M* media types (e.g. internet) and *j* ∈ *J* outlets (e.g. cnn.com), *J_m* is set of outlets *j* in medium *m*
- $i \in I$ individuals, I_{lib} and I_{cons} are set of liberals and conservatives
- cons_j and *lib_j* are number of conservative and liberal visits to outlet j (for internet/newspapers etc. can visit multiple outlets)
 - $visits_j = cons_j + lib_j$
- Isolation index is then

$$S_m = \Sigma_{j \in J_m} \left(\frac{cons_j}{cons_m} \cdot \frac{cons_j}{visits_j} \right) - \Sigma_{j \in J_m} \left(\frac{lib_j}{lib_m} \cdot \frac{cons_j}{visits_j} \right)$$

• [First/second] term is visit-weighted average exposure of [conservatives/liberals] (*cons_m* is number of conservative visits on medium *m*)

- Use aggregate data for 2009 on website audiences by comScore plus micro-data on browsing for 2004-2008
- Also have offline consumption data of newspapers, TV, magazines
- For face-to-face interactions use data on political views of acquaintances in GSS and National Election Study

- Isolation index = 7.5 p.p. for the internet
 - Average conservative's exposure is 60.6%, liberal's is 53.1% (similar to if get all news from cnn.com)
- News consumers with extremely high or low exposure are rare
 - $\bullet\,$ Consumer who gets news only from foxnews has more conservative news diet than 99% of Internet users
- Other isolation indices: broadcast TV news (1.8), cable TV news (3.3), magazines (4.7), local newspapers (4.8), national newspapers (10.4)

- Comparison to social segregation:
 - Individuals matched randomly within counties (5.9)
 - Individuals matched randomly within ZIP codes (9.4)
 - Voluntary associations (14.5) and Work (16.8)
 - Neighbourhoods (18.7) and Family (24.3)
 - Trusted friends (30.3) and political discussants (39.4)

• No evidence that internet is becoming more segregated over time

- Most online news consumption is concentrated in a small number of relatively centrist sites
- Significant share of consumers get information from multiple sites
 - Especially true of visitors to extreme conservative or liberal sites

Yanagizawa-Drott (QJE, 2014)

"Propaganda and Conflict: Evidence from the Rwandan Genocide"

Shifting gears now...

- Can media act as a coordination device?
 - We've covered the Barbera and Jackson (2017) model
 - Here's another approach
- The theoretical model in Yanagizawa-Drott's online appendix
 - We've covered empirics in the "Conflict" lectures
 - The effects on radio broadcasting on violence in Rwanda

Technically a global games model

- Really popular among theorists nowadays, probably will be more popular
- A simple, tractable way of analyzing coordination games.
 - General problem with coordination games: multiple equilibria, hard to make predictions
 - Global games: model this situation as an incomplete information game
 - Unique equilibrium, testable predictions
 - Carlson and van Damme (ECMA, 1993), Morris and Shin (AER, 1998)

- One village, continuum of citizens
- Two ethnic groups: H (size 1) and T (size t)
- An individual in H decides whether to attack or not

$$u = egin{cases} heta + lpha rac{h}{t} & ext{if attack} \ 0 & ext{if not} \end{cases}$$

 $\theta:$ punishment cost, h: no. of people attacking, $\alpha \geq$ 0: strategic complementarity

Information and beliefs

There is incomplete info. about θ

• If access to radio (w.p. r), i also observes $p = \theta + b$

There is "diffuse prior" on θ (i.e. prior has negligible effect on posterior). Posterior:

• If only observe x_i,

$$\bar{\theta}_i^N \sim N(x_i, \sigma_x^2)$$

• If observe x_i and p,

$$\bar{\theta}_i^R \sim N(\frac{\sigma_x^2 x_i + \sigma_p^2 p}{\sigma_x^2 + \sigma_p^2}, \frac{\sigma_x^2 \sigma_p^2}{\sigma_x^2 + \sigma_p^2})$$

Key assumption: p is **public signal** (access to radio is common knowledge).

• *i* knows exactly *r* people have heard the radio, and knows that everybody knows this, etc...

As in a global games model, unique equilibrium: attack iff

 $ar{ heta}^\kappa_i \geq \kappa^j \quad ext{ for } j \in \{N, R\}$

Because p is a public signal, κ^R depends on r: $\kappa^R(r)$.

• Heuristically, you don't only infer θ from p, but also learn how many people have inferred θ .

Here's an intro:

Lemma 1

When the propaganda transmits the signal that violence against the minority group is state-sponsored (i.e., the cost θ is sufficiently low), participation in violence increases in the population with access to the media broadcasts (If $p > -\frac{\alpha}{2t}$, then $\frac{\partial h}{\partial r} > 0$).

But more importantly:

Proposition 1

If the condition in Lemma 1 is satisfied, then there are increasing scale effects for militia violence (h_c) , but not individual violence (h_i) : $\frac{\partial^2 h_c}{\partial r^2} \ge 0$, $\frac{\partial^2 h_i}{\partial r^2} = 0$, $\frac{\partial h_i}{\partial r} \ge 0$.

Heuristically, radio coordinates facilitation \Rightarrow Second-order effects as well.

Comparative Statics

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

In a picture:

14.770 Introduction to Political Economy Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.