# The capacity curve

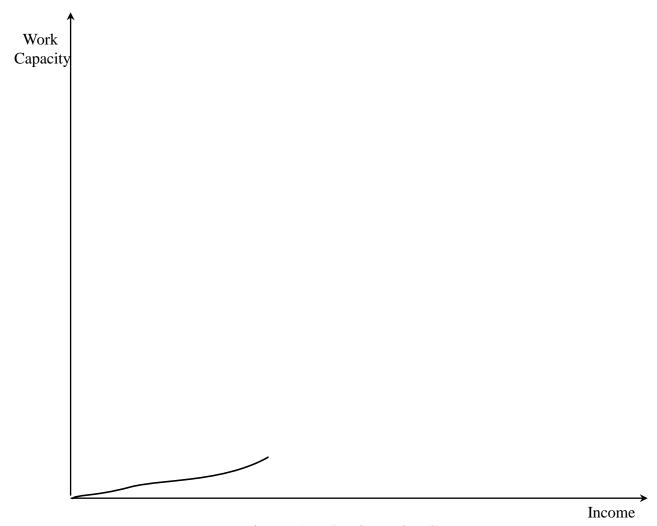



Figure 1: The Capacity Curve
The Piece Rate

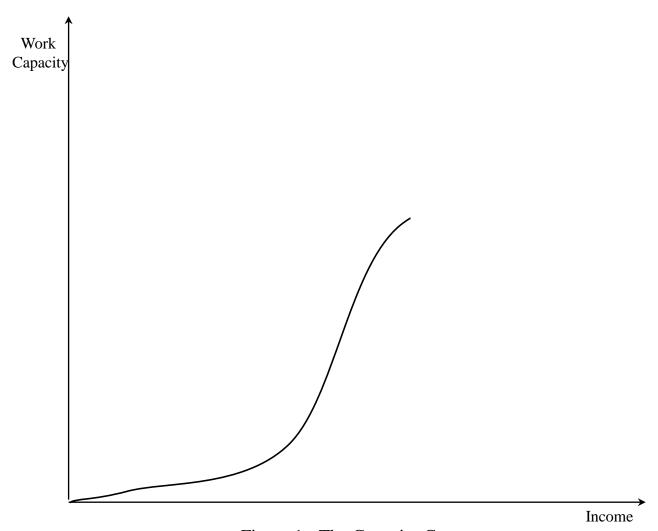



Figure 1: The Capacity Curve
The Piece Rate

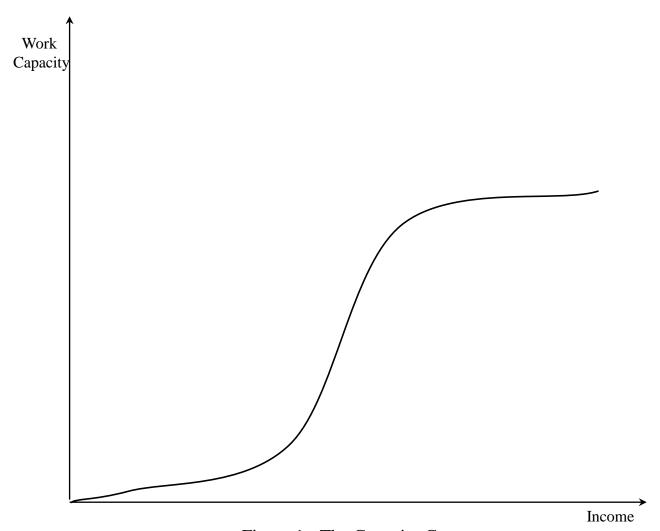



Figure 1: The Capacity Curve
The Piece Rate

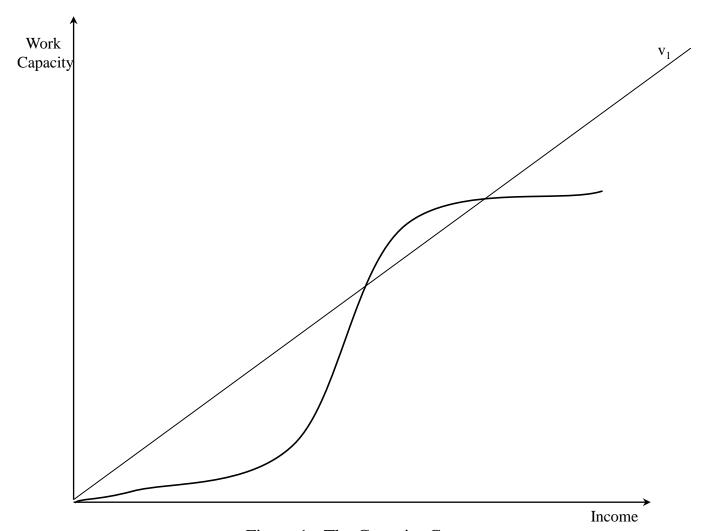



Figure 1: The Capacity Curve
The Piece Rate

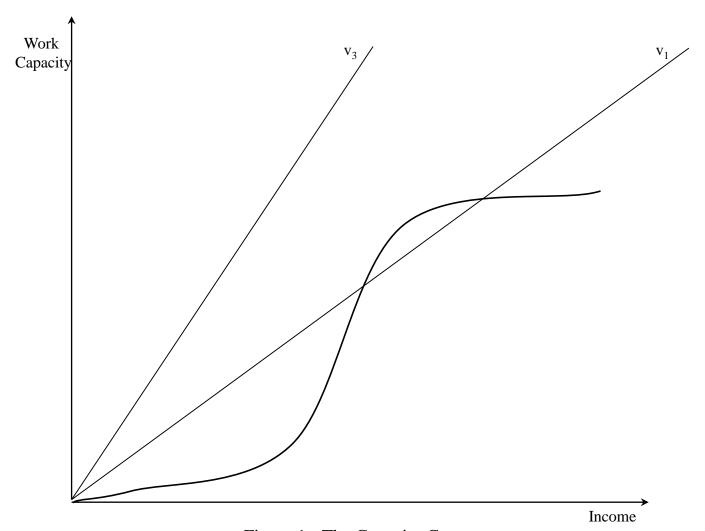



Figure 1: The Capacity Curve
The Piece Rate

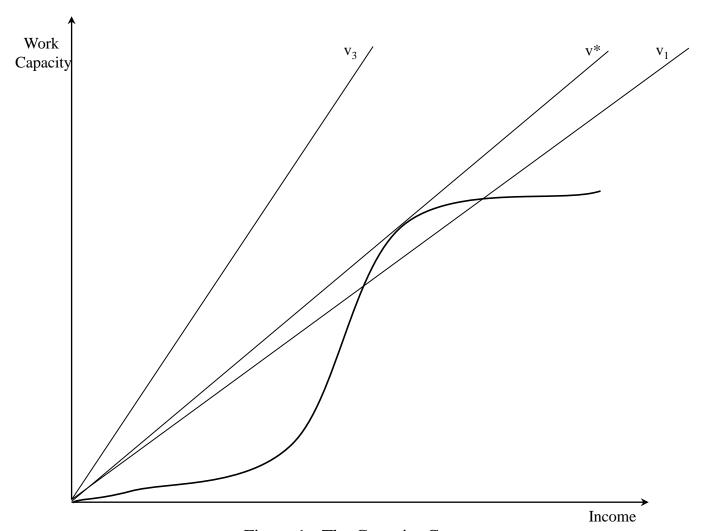
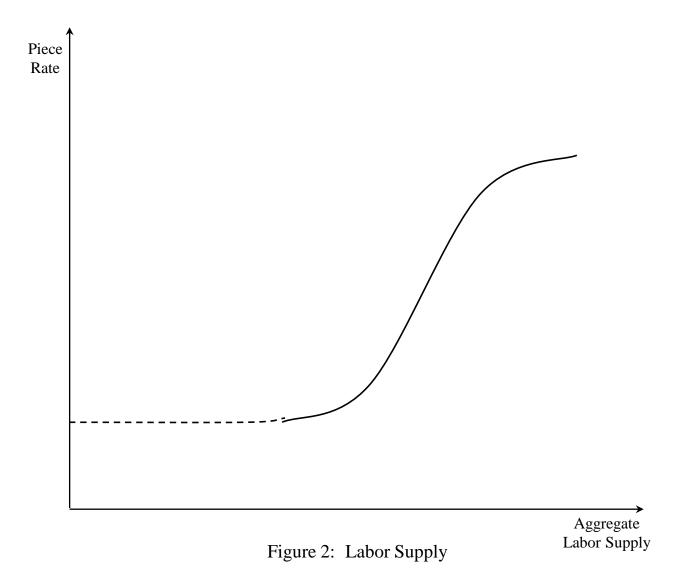




Figure 1: The Capacity Curve
The Piece Rate

## Aggregate labor supply



## Possible equilibria

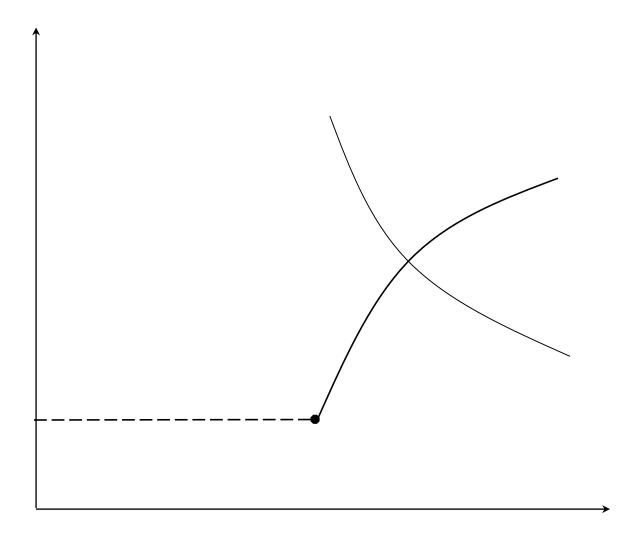



Figure 3: Possible Equilibria

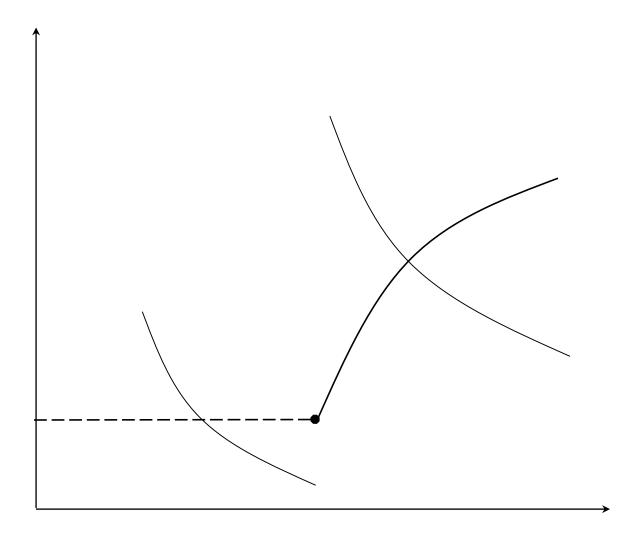



Figure 3: Possible Equilibria

### The effect of non-labor income

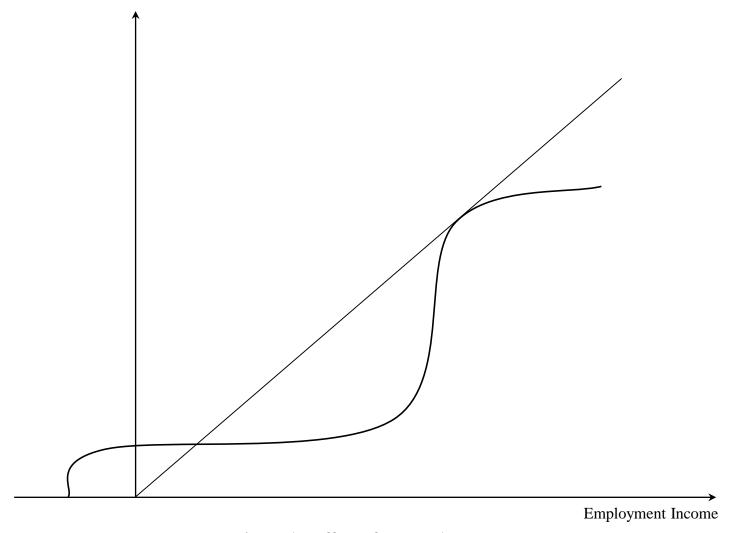



Figure 4: Effect of Non-Labor Income on the Capacity Curve

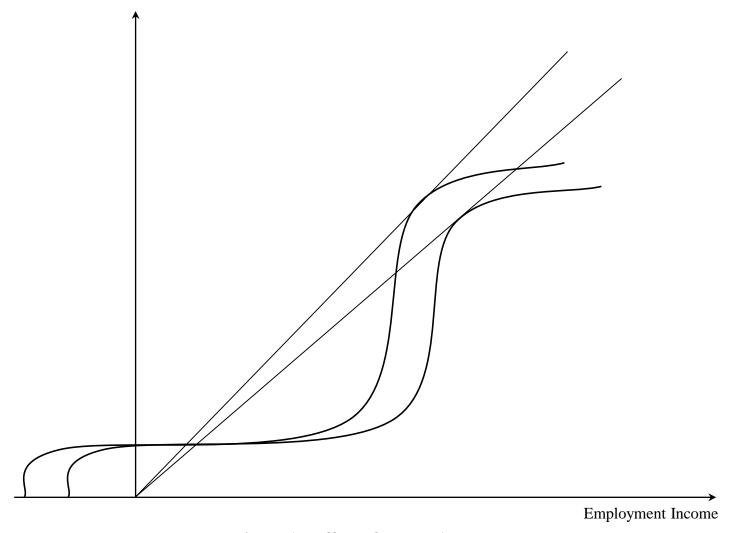



Figure 4: Effect of Non-Labor Income on the Capacity Curve

### Distribution of land

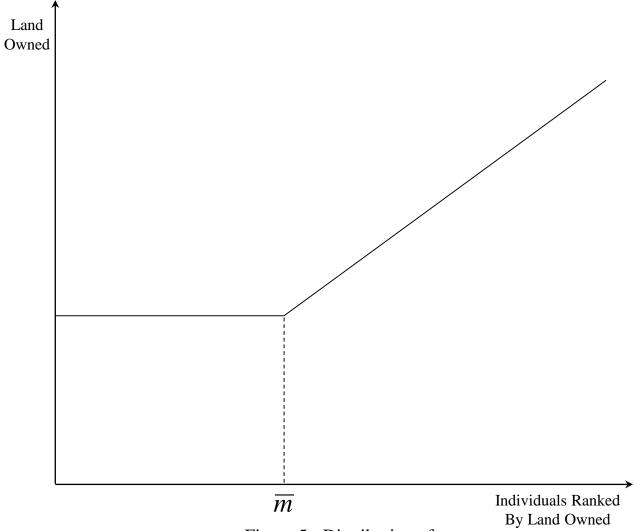



Figure 5: Distribution of Land

# Labor supply as function of land owned

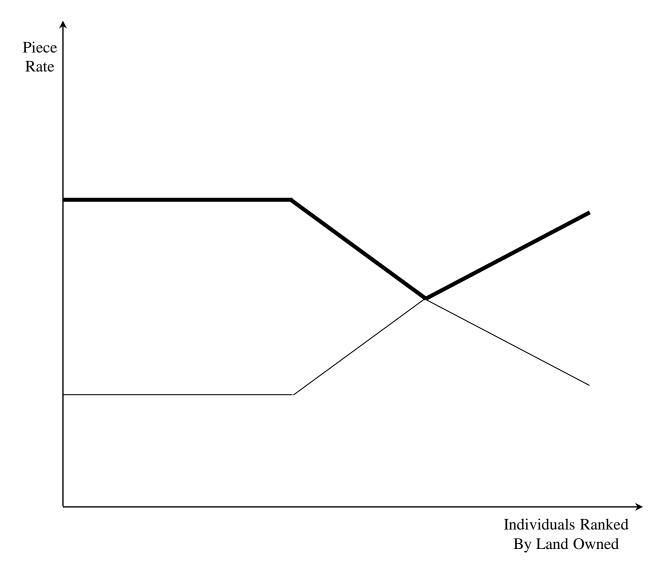



Figure 6: Effective Reservation Wage

## Different types of equibria

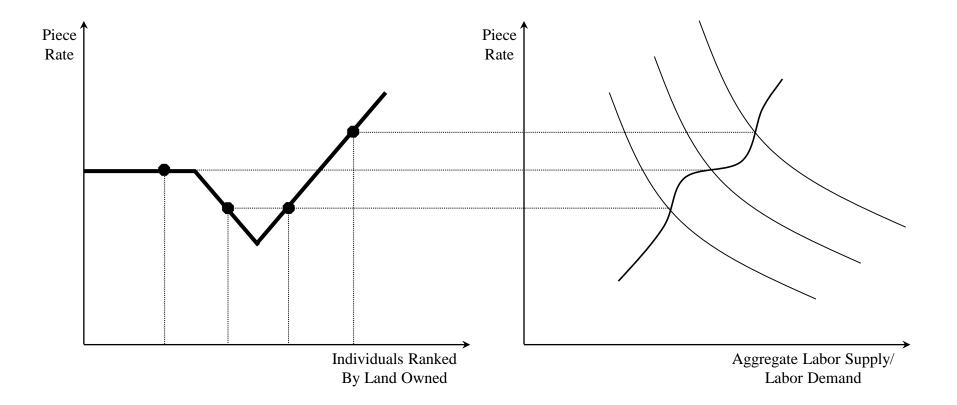
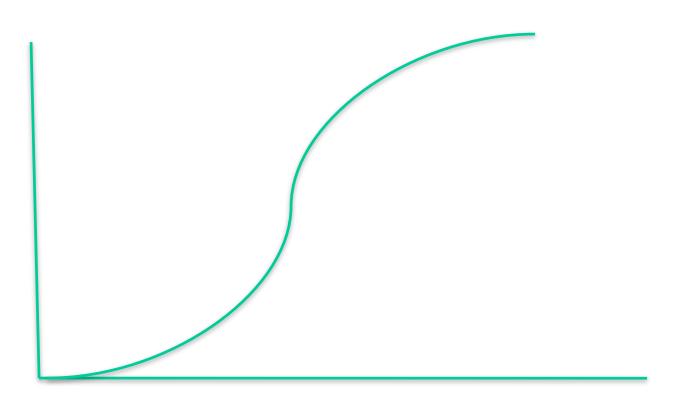



Figure 7: Types of Equilibria

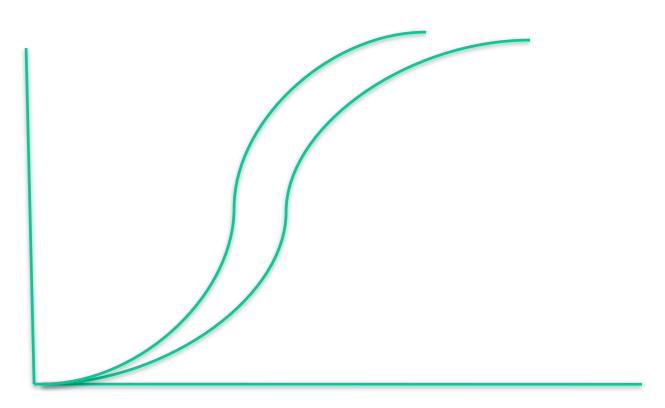
## Policy experiments

### • Land Reform:

- MAY improve production and employment (how?)
- CAN improve production without reducing unvoluntary unemployment (how?)
- Is it possible to improve the lot of the poor without decreasing someone's lot?
  - The economy is PARETO EFFICIENT: it is impossible to improve the welfare of someone without decreasing the welfare of someone else
- Minimum wage
- Cash tranfer


### Intra family issues

• Suppose you have a family of two, how should they share resources?


### A dynamic version

- Introduce some dynamics: you can "borrow" or "invest" in your capacity
- What may happen to the capacity curve of *tomorrow* as a function of how you eat *today*?

# Capacity curve with different nutrition histories



# Capacity curve with different nutrition histories



### **Implications**

- With better nutrition history, can produce more for each level of nutrition
- Long term effects of short term investments: potentially very high returns
- Returns to investing in children:
  - Long term impacts of deworming for a short period of time: 23% increase in wage for just two extra years with deworming
  - Special example: in utero nutrition.

### Labor Markets

- Suppose an employer could reap the benefit of investing in a worker, what would they now want to do?
- Do they have incentives to do so in a casual labor market?
- Possible arrangements:
  - Borrowing: what is the difficulty?
  - Long term contracts (bonded labor; slavery:
     Time on the cross)

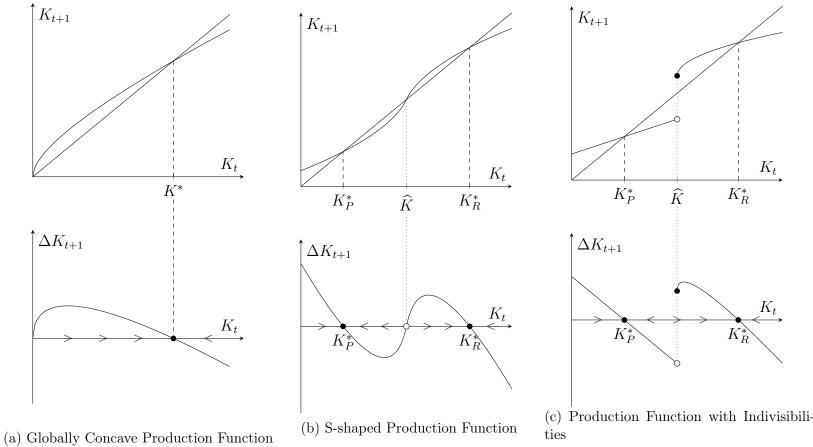
### Interpretation

- Resources may not be shared equally within the family
  - Gender discrimination
  - Widows: "Witch Killings" in Africa (Ted Miguel)
  - Children and Adults: households may decide to feed adults. Combined with the dynamic version of capacity curve, this may perpetuate the cycle.

### Conclusion

- Convexity (S shape) of capacity curve can generate poverty trap
- Next time: we will empirically examine the components of the capacity curve and see whether there is evidence of convexity.
- What we need for a poverty trap
  - Strong relationship between income and nutrition
  - Strong relationship between nutrition and productivity

### References


• Ray, D. (1998). *Development Economics*. Princeton University Press: Princeton, NJ.

• Dasgupta, P. (1997). Nutritional status, the capacity for work, and poverty traps. *Journal of Econometrics*, 77(1), 5-37.

#### From Theory to Mechanisms and Evidence

- This model wants us to think about one particular mechanism of poverty traps based on a non standard production function
- This is not the only form that poverty trap can take but it is a frequent one
- Other sources ?
- fixed investment in small business; increasing returns to education; impact of poverty on productivity through mental health/ability to focus (bandwidth)/environment
- Two ways to think about testing a poverty trap idea of that kind:
  - Are the underlying mechanisms present, and is the underlying production function of the right shape ?
  - Do you see a persistent impact of asset on income growth/productivity that has the right shape

Figure 3: Three Transition Equations and Implied Asset Dynamics



(c) Production Function with Indivisibili-

#### Formalization of this argument

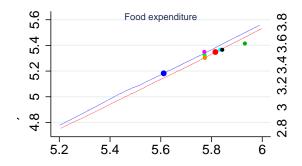
- For multiple Steady state, the curve that links income today to income tomorrow must intersect the 45 degree line from below.
- $y_t = f(g(t))$ .
- At steady crossing point, we must have that the product of the two elasticity is above 1.
- This means we must pay attention quantitatively to the elasticity of the relationship between nutrition and income and between income and nutrition.

# How about the purely nutrition based idea? TN Subramanian Critic to Das Gupta and Ray

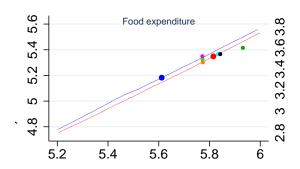
- Food is too cheap: nutrition based poverty trap cannot be real
- Lottery argument: work some days, don't work some days
- Return to nutrition are not steep enough

#### Estimating income effect

- Best descriptive evidence: Deaton Subramanian on calories in India.
  - Clear relationship between total expenditures per capita and calorie consumption: figure
  - The relationship does not appear to be non-linear, at least in this range (despite the fact that it is probably an over estimate due to the reverse causality): 
     Elasticity
  - There is also a strong relationship between price of calories and expenditures (see figure), indicating a lot of substitution towards more expensive calories: not clear that households' back is against the wall, even very poor households.
  - Since the relationship is more or less log-linear, they proceed to estimate a log-linear relationship, which allows them to add control variables: Table.
  - When you become 10% richer, you spend 7% more on food, and half of those goes into better food, half of those into more calories.
  - Engel curse seems to fall down in India figure.


### Is the true relationship even lower? Jensen Miller

- Price Experiment in China: subsidize staple food in two region for randomly selected household. Survey food consumption after a few month.
- In both regions, substitution towards more expensive calories:
- In one region, calories consumption actually worsens. No perceptible improvement on the other items except fat. In the other region, no change in calories consumption Table.
- What can explain these results? What does this imply for the income effect on calorie consumption in this context? This is a sample of urban poor who may eat enough.
- Caveats: short term decrease in food prices: people may be using the windfall to have good food rather than to improve their nutritional status. Long term increase/decrease may have very different impacts.


## Experimental estimates of income effects give higher numbers

- Give Directly: lump sum or monthly transfer
- Randomized evaluation.

### Haushofer and Shapiro: Consumption



## Haushofer and Shapiro: food expenditure elasticity



# Haushofer and Shapiro: food expenditure elasticity

|                           |         | ·            |                    |
|---------------------------|---------|--------------|--------------------|
|                           | E       | ntire sample |                    |
|                           | (1)     | (2)          | (3)                |
|                           | OLS     | IV           | Hausman<br>p-value |
| Food total                | 1.00*** | 0.83***      | 0.05**             |
|                           | (0.02)  | (0.08)       |                    |
| Food own production (USD) | 0.92*** | 1.10***      | 0.53               |
|                           | (0.09)  | (0.31)       |                    |
| Food bought (USD)         | 1.03*** | 0.87***      | 0.18               |
|                           | (0.04)  | (0.10)       |                    |
| Cereals (USD)             | 1.20*** | 0.75**       | 0.29               |
|                           | (0.09)  | (0.33)       |                    |
| Meat & fish (USD)         | 1.17*** | 2.07***      | 0.01**             |
|                           | (0.09)  | (0.37)       |                    |
| Fruit & vegetables (USD)  | 0.95*** | 0.76***      | 0.30               |
|                           | (0.06)  | (0.19)       |                    |
| Dairy (USD)               | 1.44*** | 1.41***      | 0.95               |
|                           | (0.11)  | (0.45)       |                    |
| Fats (USD)                | 0.89*** | 0.62***      | 0.32               |
|                           | (0.07)  | (0.24)       |                    |
| Sugars (USD)              | 0.89*** | 0.68***      | 0.46               |
|                           | (0.08)  | (0.25)       |                    |
| Other food (USD)          | 1.14*** | 0.80***      | 0.16               |
|                           | (0.06)  | (0.18)       |                    |
| Alcohol (USD)             | 0.53*** | -0.13        | 0.36               |
| •                         | (0.13)  | (0.56)       |                    |
| Tobacco (USD)             | 0.24**  | -0.19        | 0.35               |
|                           | (0.09)  | (0.36)       |                    |

### Conclusion

- The purely nutrition base poverty trap may not be directly the most relevant (unless we have a HUGE elasticity of productivity with respect to nutrition)
- But there are many other potential source of this S-curve
- Is there a direct evidence of a poverty trap?

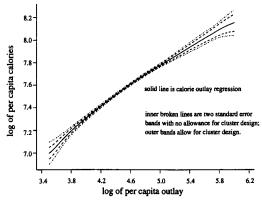



Fig. 2.—Regression function for log calories and log per capita expenditure, Maharashtra, India, 1983.

◆ Go Back

 $@ The \ University of Chicago \ Press. \ All \ rights \ reserved. \ This \ content \ is \ excluded \ from \ our \ Creative \ Commons \ license. For \ more \ information, see \ https://ocw.mit.edu/help/faq-fair-use/$ 

#### Deaton and Subramanian, Figure 3

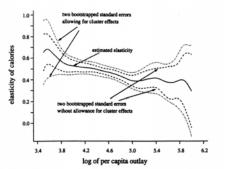



Fig. 3.—Elasticity of per capita calories to per capita expenditure, Maharashtra, India, 1983.



© University of Chicago All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

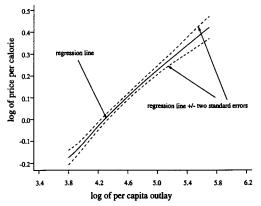



Fig. 4.—Log of price per calorie and log of per capita expenditure, Maharashtra, india, 1988.



 $@\ University\ of\ Chicago\ All\ rights\ reserved.\ This\ content\ is\ excluded\ from\ our\ Creative\ Commons\ license.\ For\ more\ information,\ see \ https://ocw.mit.edu/help/faq-fair-use/$ 

TABLE 2

OLS Estimates of Double Log Calorie and Calorie Price Regressions with Other Covariates

|                              |                 | LOG CALORIE | AVAILABILITY          | LOG PRICE PER CALORIE |                 |       |                       |       |
|------------------------------|-----------------|-------------|-----------------------|-----------------------|-----------------|-------|-----------------------|-------|
|                              | All Data<br>(I) |             | Within Village<br>(2) |                       | All Data<br>(3) |       | Within Village<br>(4) |       |
|                              | β               | 1           | β                     | ,t                    | β               | t     | β                     | t     |
| Constant                     | 6.028           | (78)        | _                     |                       | -1.5934         | (18)  |                       |       |
| In PCE                       | .3655           | (29)        | .3407                 | (27)                  | .3799           | (25)  | .3217                 | (23)  |
| In household size            | 1572            | (14)        | 1630                  | (21)                  | .0839           | (6.8) | .0661                 | (8.4) |
| rm04                         | 0967            | (2.2)       | 1461                  | (4.1)                 | .1024           | (2.3) | .1008                 | (3.3) |
| rm59                         | .0488           | (1.2)       | .0321                 | (1.0)                 | 0467            | (1.2) | 0331                  | (1.2) |
| rm1014                       | .0891           | (1.9)       | .0612                 | (1.9)                 | 1120            | (2.3) | 0842                  | (2.9) |
| rm1555                       | .1636           | (5.1)       | .1634                 | (5.9)                 | 1700            | (4.3) | 1347                  | (5.0) |
| rm55+                        | .1406           | (3.0)       | .1213                 | (2.8)                 | 1565            | (3.6) | 1074                  | (2.9) |
| ⊤f04                         | 1359            | (3.1)       | 1869                  | (4.9)                 | .0460           | (1.1) | .0742                 | (2.2) |
| rf59                         | .0176           | (.4)        | 0040                  | (.1)                  | 0643            | (1.4) | 0476                  | (1.4) |
| rf 1014                      | .1140           | (2.8)       | .0679                 | (2.0)                 | 1108            | (2.7) | 0873                  | (3.0) |
| rf  555                      | .0420           | (1.6)       | .0514                 | (2.1)                 | .0085           | (.3)  | 0021                  | (d)   |
| Scheduled caste              | ~.0083          | (.8)        | 0179                  | (2.0)                 | .0020           | (.2)  | 0071                  | (.8)  |
| Hindu                        | .0114           | (.7)        | .0302                 | (2.1)                 | 0562            | (2.6) | 0605                  | (4.4) |
| Buddhist                     | .0237           | (L1)        | .0400                 | (2.0)                 | 1080            | (4.0) | 0760                  | (4.0) |
| Self-employed nonagriculture | .0187           | (1.0)       | .0064                 | (.4)                  | 0270            | (1.1) | .0079                 | (.5)  |
| Agricultural labor           | .0433           | (2.2)       | .0222                 | (1.4)                 | 0837            | (3.4) | 0418                  | (2.7) |
| Nonagricultural labor        | .0275           | (L1)        | .0293                 | (1.5)                 | 0210            | (.8)  | 0315                  | (1.7) |
| Self-employed agriculture    | .0618           | (3.5)       | .0389                 | (2.7)                 | 0610            | (2.8) | 0118                  | (.8)  |
| $R^2$                        | .5532           |             | .6706                 |                       | .4254           |       | .6414                 | ,     |

NOT.—Viriable beginning with rar demographic ratios, so that e.g., 1765 is the ratio of female aged 5-9 to real boundabil emethers, and tra55 is the ratio of the late. The Defear are from the tray of dumels, see [Figure 1] to produce of complete, or employed or employed are improduced to the control cangent, "diverb laber." The control cangent, "diverb laber are the control cange of the ca

<sup>©</sup> University of Chicago All rights reserved. This content is excluded from our Creative Commons license. For more information, see  $\frac{https://ocw.mit.edu/help/faq-fair-use/}{https://ocw.mit.edu/help/faq-fair-use/}$ 

#### Deaton and Dreze, Figure 1

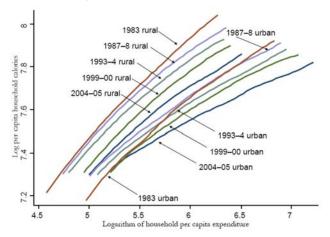



Figure 1: Calorie Engel curves, rural and urban India, 1983 to 2004-05

◀ Go Back

<sup>©</sup> Economic & Political Weekly. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="https://ocw.mit.edu/help/faq-fair-use/">https://ocw.mit.edu/help/faq-fair-use/</a>

Table 4. Consumption Response to the Price Subsidy

|                |                    |                   |                   |                  | HUNAN   |                   |                   |         |                  |                    |
|----------------|--------------------|-------------------|-------------------|------------------|---------|-------------------|-------------------|---------|------------------|--------------------|
|                | Rice               | Other Cereal      | Fruit & Veg       | Meat             | Seafood | Pulses            | Dairy             | Fats    | Food Out         | Non-Food           |
| %Subsidy(rice) | -0.235*            | 0.397             | -0.623***         | 0.377            | 0.482** | -0.791*           | -0.054            | -0.567* | 0.117            | 0.200              |
|                | (0.140)            | (0.355)           | (0.227)           | (0.415)          | (0.230) | (0.476)           | (0.069)           | (0.313) | (0.347)          | (0.200)            |
| %ΔEarned       | 0.043***           | -0.001            | 0.058***          | 0.002            | 0.036   | -0.052            | -0.006            | 0.022   | 0.059            | 0.014              |
| %ΔUnearned     | (0.014)<br>-0.044* | (0.040)<br>-0.087 | (0.021)<br>-0.018 | (0.043)<br>0.076 | (0.022) | (0.050)<br>-0.037 | (0.004)<br>-0.021 | (0.031) | (0.044)<br>0.020 | (0.025)<br>0.089** |
|                | (0.025)            | (0.065)           | (0.040)           | (0.071)          | (0.042) | (0.075)           | (0.019)           | (0.055) | (0.057)          | (0.038)            |
| %ΔPeople       | 0.89***            | 0.46**            | 0.63***           | 0.05             | -0.07   | 0.48**            | 0.09              | 0.88*** | -0.18            | 0.15               |
| •              | (0.08)             | (0.19)            | (0.11)            | (0.24)           | (0.10)  | (0.23)            | (0.05)            | (0.16)  | (0.18)           | (0.13)             |
| Constant       | 4.1***             | 7.5***            | -0.3              | -5.7**           | -0.2    | 8.8***            | 0.2               | -8.3*** | -3.5             | -52.6***           |
|                | (1.0)              | (2.5)             | (1.4)             | (2.8)            | (1.4)   | (3.0)             | (0.6)             | (2.1)   | (2.5)            | (1.5)              |
| Observations   | 1258               | 1258              | 1258              | 1258             | 1258    | 1258              | 1258              | 1258    | 1258             | 1258               |
| R <sup>2</sup> | 0.19               | 0.06              | 0.11              | 0.07             | 0.02    | 0.03              | 0.02              | 0.09    | 0.02             | 0.20               |

**∢** Go Back

|                 |              |              |             |          | GANSU   |         |         |          |          |          |
|-----------------|--------------|--------------|-------------|----------|---------|---------|---------|----------|----------|----------|
|                 | Wheat        | Other Cereal | Fruit & Veg | Meat     | Seafood | Pulses  | Dairy   | Fats     | Food Out | Non-Food |
| %Subsidy(wheat) | 0.353        | -0.283       | 0.049       | 0.130    | -0.017  | 0.240   | 0.282   | 0.507**  | 0.109    | -0.021   |
|                 | (0.258)      | (0.335)      | (0.190)     | (0.299)  | (0.017) | (0.320) | (0.207) | (0.251)  | (0.276)  | (0.180)  |
| %ΔEarned        | $0.079^{**}$ | -0.067       | 0.061**     | 0.085*   | 0.000   | -0.047  | -0.025  | 0.091*** | 0.070    | 0.040    |
|                 | (0.036)      | (0.049)      | (0.027)     | (0.044)  | (0.000) | (0.043) | (0.029) | (0.033)  | (0.043)  | (0.025)  |
| %ΔUnearned      | -0.017       | 0.130        | 0.046       | 0.314*** | 0.025   | 0.012   | 0.108   | -0.110   | -0.077   | 0.229*** |
|                 | (0.092)      | (0.106)      | (0.077)     | (0.091)  | (0.025) | (0.104) | (0.073) | (0.091)  | (0.097)  | (0.070)  |
| %ΔPeople        | 0.58***      | 0.52*        | 1.01***     | -0.10    | -0.01   | 0.44**  | 0.10    | 0.66     | 0.00     | -0.04    |
|                 | (0.22)       | (0.29)       | (0.15)      | (0.28)   | (0.01)  | (0.18)  | (0.12)  | (0.15)   | (0.19)   | (0.19)   |
| Constant        | -26.1***     | 23.8***      | 11.0***     | 2.4      | -0.2    | 6.0**   | -3.4*   | 7.2      | 7.5***   | -38.2*** |
|                 | (2.3)        | (2.8)        | (1.6)       | (2.5)    | (0.2)   | (2.6)   | (1.9)   | (2.1)    | (2.4)    | (1.4)    |
| Observations    | 1269         | 1269         | 1269        | 1269     | 1269    | 1269    | 1269    | 1269     | 1269     | 1269     |
| R <sup>2</sup>  | 0.08         | 0.06         | 0.07        | 0.05     | 0.03    | 0.06    | 0.03    | 0.07     | 0.05     | 0.17     |

**∢** Go Back

Table 2. Calorie Response to the Price Subsidy

|                      |                              |                               | HUNAN                         |                                  | GANSU                       |                              |                               |                               |                                  |                             |
|----------------------|------------------------------|-------------------------------|-------------------------------|----------------------------------|-----------------------------|------------------------------|-------------------------------|-------------------------------|----------------------------------|-----------------------------|
|                      | (1)                          | (2)                           | (3)                           | (4)                              | (5)                         | (6)                          | (7)                           | (8)                           | (9)                              | (10)                        |
|                      | Full<br>Sample<br>(Calories) | Below<br>Median<br>(Calories) | Above<br>Median<br>(Calories) | Bottom<br>Quartile<br>(Calories) | Full<br>Sample<br>(Protein) | Full<br>Sample<br>(Calories) | Below<br>Median<br>(Calories) | Above<br>Median<br>(Calories) | Bottom<br>Quartile<br>(Calories) | Full<br>Sample<br>(Protein) |
| %Subsidy(rice/wheat) | -0.206*                      | -0.042                        | -0.339**                      | 0.004                            | -0.096                      | 0.154                        | 0.169                         | 0.132                         | 0.070                            | 0.091                       |
| %ΔEarned             | 0.031                        | (0.144)<br>0.026*             | 0.036**                       | (0.207)<br>0.037*                | 0.040***                    | (0.100)<br>0.028**           | (0.143)<br>0.027              | (0.138)<br>0.029              | (0.261)<br>0.053                 | (0.112)<br>0.017            |
| %ΔUnearned           | (0.011)<br>-0.022            | (0.014)<br>-0.025             | (0.018)<br>-0.023             | (0.021)<br>-0.037                | (0.013)<br>-0.010           | (0.014)<br>0.046             | (0.021)<br>0.020              | (0.019)<br>0.071              | (0.034)<br>0.101                 | (0.016)<br>0.069            |
| %ΔPeople             | (0.020)                      | (0.027)                       | (0.028)                       | (0.034)                          | 0.023)                      | (0.035)                      | (0.056)                       | 0.043)                        | (0.119)                          | (0.033)                     |
| Constant             | (0.07)                       | (0.08)                        | 0.11)                         | (0.10)                           | (0.07)                      | (0.08)                       | (0.10)                        | (0.12)                        | (0.13)                           | (0.09)                      |
| Constant             | (0.8)                        | (1.1)                         | (1.1)                         | (1.5)                            | (0.9)                       | (0.8)                        | (1.1)                         | (1.1)                         | (1.7)                            | (0.9)                       |
| Observations         | 1258                         | 633                           | 625                           | 317                              | 1258                        | 1269                         | 634                           | 635                           | 320                              | 1269                        |
| R <sup>2</sup>       | 0.26                         | 0.34                          | 0.21                          | 0.39                             | 0.20                        | 0.18                         | 0.23                          | 0.15                          | 0.29                             | 0.16                        |

Notes: Regressions include county\*time fixed-effects. The dependent variable in columns 1-4 and 6-9 is the are percent change in bousehold real and and in columns 5 and 10 it is the are percent change in household protein consumption. Standard errors othered at the household clevel. \*Subsidy (rice/wheat) is the rice or wheat price subsidy, measured as a percentage of the average price. \*McAirned is the are percent change in the household carnings from work; \*McAirned sources (government payments, persistent, sentiances, rent and interest from assets); \*McAirned sources (government payments, persistent, sentiances, rent and interest from assets); \*McAirned sources (government payments, persistent and 10 percent level. \*\*Significant at 15 percent level.\*\*

◀ Go Back

### How the poor spend their money

As a Share of Total Consumption

|                  | Food  | Alcohol/<br>Tobacco | Education | Health |  |
|------------------|-------|---------------------|-----------|--------|--|
|                  |       |                     |           |        |  |
| Cote d'Ivoire    | 64.4% | 2.7%                | 5.8%      | 2.2%   |  |
| Guatemala        | 65.9% | 0.4%                | 0.1%      | 0.3%   |  |
| Guatemaia        | 56.0% | 5.0%                | 1.6%      |        |  |
|                  |       |                     |           | 5.1%   |  |
| India - UP/Bihar | 80.1% | 3.1%                | 0.3%      | 5.2%   |  |
| Indonesia        | 66.1% | 6.0%                | 6.3%      | 1.3%   |  |
| Mexico           | 49.6% | 8.1%                | 6.9%      | 0.0%   |  |
| Nicaragua        | 57.3% | 0.1%                | 2.3%      | 4.1%   |  |
| Pakistan         | 67.3% | 3.1%                | 3.4%      | 3.4%   |  |
| Panama           | 67.8% |                     | 2.5%      | 4.0%   |  |
| Papua New Guinea | 78.2% | 4.1%                | 1.8%      | 0.3%   |  |
| Peru             | 71.8% | 1.0%                | 1.9%      | 0.4%   |  |
| South Africa     | 71.5% | 2.5%                | 0.8%      | 0.0%   |  |
| Timor Leste      | 76.5% | 0.0%                | 0.8%      | 0.9%   |  |

### References I



Angus Deaton and Jean Drèze, Food and nutrition in india: facts and interpretations, Economic and political weekly (2009), 42–65.



Partha Dasgupta and Debraj Ray, *Inequality as a determinant of malnutrition and unemployment: Theory*, The Economic Journal **96** (1986), no. 384, 1011–1034.



Johannes Haushofer and Jeremy Shapiro, The short-term impact of unconditional cash transfers to the poor: experimental evidence from kenva. The Quarterly Journal of Economics 131 (2016), no. 4, 1973–2042.



Robert T Jensen and Nolan H Miller, Giffen behavior and subsistence consumption, American economic review 98 (2008), no. 4, 1553–77.



Edward Miguel, Poverty and witch killing, The Review of Economic Studies 72 (2005), no. 4, 1153-1172.



Shankar Subramanian and Angus Deaton, *The demand for food and calories*, Journal of political economy **104** (1996), no. 1, 133–162.



Thirukodikaval N Srinivasan, *Destitution: a discourse*, Journal of Economic Literature **32** (1994), no. 4, 1842–1855.

MIT OpenCourseWare <a href="https://ocw.mit.edu/">https://ocw.mit.edu/</a>

14.771: Development Economics Fall 2021

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.