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Introduction to 14.126 

14.126 is an advanced PhD class on game theory and economic 
applications. 

Target audience: 

I Students in economics and related fields who want to use 
game theory in their research 

I IO, political economy, organizational economics, development, 
macro, . . . 

I Computer science, political science, evolutionary biology, . . . 

I Students who want to do research in game theory 

Correspondingly, class covers a mix of standard material 
(1970s-90s) and recent papers. 
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Prerequisites 

Basic game theory on the level of 14.12 or 14.122. 

Some familiarity with real analysis and probability theory. 
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Requirements 

4 problem sets (60% of the grade) 

Take-home final, 24 hours during exam week (40%) 
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Outline: Alex’s part 

I Fundamental solution concepts and equilibrium refinements (1 
week) 

I Communication games: signaling and cheap talk (1 week) 
I Repeated games (2 weeks) 
I Reputation effects in games and markets (1 week) 
I Bargaining (1 week) 
I Social learning (guest lecture by Krishna Dasaratha on March 
18th) 
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Tentative Outline: Muhamet’s part 

I Supermodular games (2 weeks) 
I Global games and potential games (2 weeks) 
I Type spaces and belief hierarchies (1 week) 
I Non-equilibrium learning in games (2 weeks) 
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Today: Fundamental Models and Solution Concepts 

I Strategic-form games 
I Nash and correlated equilibrium 

I Existence 
I Upper hemi-continuity 

I Rationalizability 
I Bayesian games 
I Nash eqm, correlated eqm, and rationalizability in Bayesian 
games 
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Strategic-Form Games (of Complete Information) 

A strategic-form game G = (I , S , u) consists of 

I a finite set of players I = {1, . . . , n}, 
I a (pure) strategy set Si for each i ∈ I , where S = ∏i Si , 
I a vNM utility function ui : S → R for each i ∈ I , where 
u = (ui )i . 
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Mixed Strategies and Conjectures 
A mixed strategy σi is a probability distribution over Si . 

I Typically, Si is a compact metric space, Σi = Δ (Si ) is space 
of Borel distributions with topology of weak convergence 
(weak* topology). 

In a mixed strategy profile σ = (σ1, . . . , σn ), the players 
randomize independently. 

I Distribution on S is the product distribution ∏i σi (si ). 

A conjecture (or belief) µ−i for player i is a probability 
distribution over S−i . 

I A player can conjecture that her opponents’strategies are 
correlated (even though, in any mixed strategy profile, players 
randomize independently). 

Utility functions extend linearly to mixed strategies and � � 
conjectures: ui (σ), ui (si , σ−i ), ui si , µ−i . 9



Best Responses, Strict Dominance 

Strategy si is a best response to conjecture µ−i (e.g., to � � � � 0 0 opponents’pure strategies s−i ) if ui si , µ−i ≥ ui si , µ−i ∀si . � � 
I Bi µ−i =set of best responses to µ−i . 
I Can analogously define when a mixed strategy is a best 
response. 

σi strictly dominates si if ui (σi , s−i ) > ui (si , s−i ) ∀s−i . 
I si is strictly dominated if some σi strictly dominates it. 
I A strategy can be strictly dominated even if it’s not strictly 
dominated by any pure strategy. [Find an example.] 
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Outline 

I Strategic-form games 
I Nash and correlated equilibrium 

I Existence 
I Upper hemi-continuity 

I Rationalizability 
I Bayesian games 
I Nash eqm, correlated eqm, and rationalizability in Bayesian 
games 
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Nash and Correlated Equilibrium 

A Nash equilibrium (Nash, 1950) is a strategy profile σ s.t. 
ui (σ) ≥ ui (si , σ−i ) ∀i , si . 
I i.e., σ s.t. each σi is a (mixed) best response to σ−i . 

A (objective) correlated equilibrium (Aumann, 1974) is a 
distribution µ ∈ Δ (S) s.t. ui (µ) ≥ ∑s µ (s) ui (di (si ) , s−i ) 
∀i , di : Si → Si . 

I i.e., µ s.t. each si is optimal given information that i takes si . 

Note: the set of correlated equilibria is a convex polytope– subset 
of the convex set Δ (S) that satisfies a set of linear inequalities. 

I In contrast, the set of Nash equilibria is not convex and not a 
polytope. This makes CE more convenient in some ways. 
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Nash vs. Correlated 

A CE is a NE in the “expanded game” where each player observes 
a private signal ri ∈ Ri before acting. 

A “revelation principle” implies that it is without loss to consider 
the “canonical” signal space Ri = Si and focus on “obedient” 
equilibria where player i takes si = ri after observing signal si . 

In the special case where signals are independent (i.e., 
µ ∈ ∏i Δ (Si )), CE reduces to NE. 

I CE generalizes NE, in the sense that any NE distribution 
µ ∈ Δ (S) is a CE. 
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Nash vs. Correlated (cntd.) 

Interpretations of CE: 

1. There is a mediator/principal who coordinates the players. 
Here, ri is the mediator’s private message to player i . 
(With public messages, get convex combinations of NE.) 

2. The game is played repeatedly and players observe private 
pre-play signals drawn from a fixed objective distribution. 
Then any steady state is a correlated equilibrium, and under 
some conditions play converges to a correlated equilibrium. 
(Without pre-play signals, a steady state is a NE. Convergence 
to NE is more subtle. . . ) 
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Many important games (auctions, contests) have discontinuous
payoffs, so the theorem is not always enough. A series of papers
generalize it to allow certain discontinuities, including Dasgupta
Maskin (ReStud 1986) and Reny (ECMA 1999). Reny
(AnnRevEcon 2020) is an up-to-date survey.

Nash Equilibrium Existence 

Theorem (Debreu, Fan, Glicksberg 1952) 
Suppose that each Si is a non-empty, convex, compact metric 
space and each ui : S → R is continuous in s and quasi-concave in 
si . There there exists a pure-strategy Nash equilibrium. 

Corollary (Nash 1950) 
Every finite game has a (possibly mixed) Nash equilibrium 

Proof. The game with S̃i = Δ (Si ) satisfies the 
Debreu-Fan-Glicksberg conditions. 
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Nash Existence: Proof 

Let F : S � S be the best reply correspondence: 
Fi (s) = Bi (s−i ). 
Note that s is a NE iff s ∈ F (s), i.e., s is a fixed point of F . 

Since S is compact and utilities are continuous, Berge’s maximum 
theorem implies that F is non-empty and has a closed graph. 

Moreover, since utilities are quasi-concave in own-actions, F is also 
convex-valued. 

By Kakutani’s fixed point theorem, every non-empty, 
convex-valued correspondence with a closed graph on a non-empty, 
compact, convex subset of a metric space has a fixed point. 

Hence, F has a fixed point. 
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Correlated Equilibrium Existence 

Existence of a correlated equilibrium follows from existence of a 
Nash equilibrium. 

However, since CE is defined by linear inequalities, it’s natural to 
expect that existence can also be established directly by linear 
programming duality (without a topological fixed point theorem 
like Kakutani). 

This was worked out by Hart and Schmeidler (MathOR 1989). 

I We’ll see a similar application of LP duality/minmax 
thm/separating hyperplane thm later in today’s lecture. 
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Upper Hemi-Continuity of NE 
Similar arguments to Nash existence show that the set of NE is 
UHC (i.e., NE do not “disappear in the limit”) in parameters that 
shift utilities continuously. 

Suppose payoffs are ui : S × X → R, where X is a space of 
parameters. Let NE (x) and PNE (x) be the mixed and pure NE 
correspondences. 

Theorem 
If S and X are compact metric spaces and each ui is continuous in 
(s, x), then NE (x) and PNE (x) are compact-valued and upper 
hemi-continuous. 

Proof. Take (xm , σm ) → (x , σ) with σm ∈ NE (xm ) ∀m. � � 
si , σm 

By continuity, inequalities are preserved in limit. So σ ∈ NE (x). 
Then ui (σm ; xm ) ≥ ui −i ; x

m ∀i , si , m. 

NE (x) is not lower hemi-continuous (i.e., NE can “appear in the 
limit”). [Find an example.] 19



Outline 

I Strategic-form games 
I Nash and correlated equilibrium 

I Existence 
I Upper hemi-continuity 

I Rationalizability 
I Bayesian games 
I Nash eqm, correlated eqm, and rationalizability in Bayesian 
games 
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Dominance and Rationality 

A strategy is “rational” if it is a best reply to some belief. 

I I.e., maximizes subjective expected utility (Savage) under 
uncertainty about opponents’strategies. 

The next lemma shows that a strategy is rational in this sense iff it 
is not strictly dominated. 

Lemma (Pearce 1984) 
A strategy si is never a best reply (to any conjecture µ−i ) iff it is 
strictly dominated. 

Proof. Strictly dominated =⇒ never a BR is immediate. 

For converse, suppose si is not strictly dominated. We will 
construct a conjecture µ−i against which it’s a best reply. 
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Not Strictly Dominated Implies Best Reply 

I For any σi , let . s−i ∈S−i ui (σi ) = (ui (σi , s−i ))

= {ui (σi )}σi ∈Σi 
of the opponents’strategies that i can attain for some σi . 
Note that U is non-empty and convex. n o 

~

~I Let U , the set of payoff vectors as a function 

I Let V = v ∈ R|S−i | : v > be the set of payoff ui (si ) 

~

vectors that strictly dominate si . Note that V is non-empty 
and convex. 

I Since si is not strictly dominated, U and V are disjoint. 
Hence, by the separating hyperplane theorem, there exists a 
non-zero vector λ ∈ R|S−i | such that λ · u ≤ λ · v 

~

∀u ∈ U, v ∈ V . Moreover, since V is unbounded in positive 
directions, we have λ ≥ 0, so a normalized version of λ is a 
conjecture µ−i . 

ui (si ) ≥ µ−i � � I Finally, note that cl V ∈ ( ) ( ) u s , so ~ µ i i i − 
∀u ∈ U. Thus, si ∈ Bi . µ−i 

· · u 
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Iterated Dominance and Rationalizability 

Rationalizability is iterated rationality: a strategy is “rationalizable” 
if it is a best reply to a conjecture where others play best replies to 
conjectures where others play best replies to conjectures where. . . 

By Pearce’s lemma, a strategy is rationalizable iff it survives 
iterated deletion of strictly dominated strategies. 

Formally, the set of (correlated) rationalizable strategy profiles T∞ is S∞ = =0 S
m , where S0 = S and Sm = ∏i S

m , where m i � � �� � 
Sm = Bi Δ Sm−1 = Sm−1 \ si : si is strictly dominated given Sm−1 i −i i −i 

I (Equality by Pearce’s lemma.) 

23



Fixed-Point Definition and Relation to Equilibrium 
A set R ⊆ S is closed under rational behavior (CURB) if 
Ri ⊆ Bi (Δ (R−i )) ∀i . 

Theorem 
Every CURB set is contained in S∞ . Moreover, if S is compact 
and utilities are continuous, then S∞ is CURB, and hence is the 
largest CURB set. 

Proof. If R is CURB, then no strategy in R is deleted at any 
round, so R ⊆ S∞ . 

Conversely, if S is compact and utilities are continuous, then any 
si ∈ / Bi (Δ (S∞)) is also not in Bi (Δ (Sm )) for some m and hence 
is deleted in round m, so S∞ is CURB. 

Note: If µ is a correlated equilibrium then its support is CURB. 
Thus, only rationalizable strategies are played in a correlated 
equilibrium. [Find a counterexample to the converse.] 24



Outline 

I Strategic-form games 
I Nash and correlated equilibrium 

I Existence 
I Upper hemi-continuity 

I Rationalizability 
I Bayesian games 
I Nash eqm, correlated eqm, and rationalizability in Bayesian 
games 
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Bayesian Games 

A Bayesian game B = (I , Θ, T , A, u, p) consists of 

I a finite set of players I = {1, . . . , n}, 
I a set of payoff-relevant parameters Θ, 
I a type space Ti for each i (often, “possible realizations of i’s 
private information”), 

I an action set Ai for each i , 
I a belief pi (·|ti ) ∈ Δ (Θ × T−i ) for each i , ti , 
I a vNM utility function ui : A × Θ → R for each i . 

An alternative definition dispenses with Θ and writes 
ui : A × T → R. This is formally a different model; whether the 
difference matters or not depends on the solution concept. . . 
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Ex Ante and Interim Perspectives 
A Bayesian game can be representated as a strategic-form game 
among the players (ex ante game) or the types (interim game). � � 
Ex ante game: G (B) = I , AT , (E [ui ])i 
I Players: I 
I Strategies: si : Ti → Ai 
I Payoffs: Ui (s) = Es [ui (a)] = ∑(θ,t) pi (θ, t) ui (s (t) , θ) 

� � S 
Interim game: IG (B) = i Ti , ∏i ∏|Ti | Ai , (E [ui |ti ])i ,ti 
I Players: T 
I Strategies: Sti = Ai 
I Payoffs: Uti (a) = E [ui (a) |ti ] = ∑(θ,t−i ) pi (θ, t−i |ti ) ui (a, θ) 
I (Note: this notation implicitly assumes finite types. With 
infinite types, defining conditional expectation sometimes 
requires some care.) 27



Outline 

I Strategic-form games 
I Nash and correlated equilibrium 

I Existence 
I Upper hemi-continuity 

I Rationalizability 
I Bayesian games 
I Nash eqm, correlated eqm, and rationalizability in 
Bayesian games 
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Bayes Nash Equilibrium 

It is natural to define a Bayes Nash equilibrium either as a NE in 
the ex ante game or a NE in the interim game. 

If pi (ti ) > 0 ∀i , ti , these definitions coincide, because si : Ti → Ai 
maximizes E(si ,s−i ) [ui (a)] iff si (ti ) maximizes E [ui (ai , a−i ) |ti ] 
∀ti . 

If some types have 0 probability, the ex ante definition is more 
permissive, because it does not require optimizing conditional on 
0-probability types. 

I But the same “almost surely.” 

Existence and UHC of BNE (including in beliefs) follow from the 
corresponding results for complete info games. 
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Common Prior Assumption 

Our general formulation of a Bayesian game doesn’t assume 
anything about how different types’beliefs relate to each other. 

However, it is often assumed that beliefs are consistent with a 
common prior: there exists P ∈ Δ (Θ × T ) such that each 
pi (·|ti ) is derived by updating p conditional on ti by Bayes’rule: 

P (θ, ti , t−i ) pi (θ, t−i |ti ) = � � ∀i , ti , θ, t−i . 
θ0 , ti , t 0 ∑(θ0 ,t−

0 
i ) 
P −i 
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Common Prior: Pros and Cons 
It is often convenient to work with a common prior: 

I Simplifies model: specify P rather than (pi (·|ti ))i ,ti . 
I Takes the view that “differences in beliefs are only due to 
differences in information.” This viewpoint is useful for 
focusing on effects of asymmetric information, which is one of 
the main reasons people study Bayesian games. 

I With a common prior, can interpret ti as the realization of i’s 
private information. 

However, common prior rules out “agreeing to disagree,” which is 
also something we sometimes want to study. 
E.g., trade due to fundamental disagreement in finance (Harrison 
Kreps 1979); “voice” and communication with heterogeneous 
priors (Banerjee Somanathan 2001; Sethi Yildiz 2016); optimism 
as a source of disagreement in bargaining (Yildiz 2003, 2004). See 
Morris (1996) for general discussion of the CPA. 

Overall, CPA is the typical case, but non-CPA is also useful. 31



Bayes Correlated Equilibrium 
Traditionally, there have been various ways of defining correlated 
equilibrium in a Bayesian game (cf. Forges 1993). 

The main modern notion is Bayes correlated equilibria (BCE) 
(Bergemann Morris 2016), which is a correlated equilibrium in the 
interim game with a common prior P: i.e., µ ∈ Δ (Θ × T × A) 
such that 

1. margΘ×T µ = P, and 
0 2. ai maximizes ∑(θ,t−i ,a−i ) µ (θ, ti , t−i , ai , a−i ) ui (ai , a−i , θ) 

∀i , ti , ai . 

2 interpretations: 

1. Design perspective: each player i knows ti ; mediator knows 
(θ, t); mediator privately recommends actions. 

2. Outside observer perspective: observer knows each player i 
knows ti but allows that players could learn more; ask what 
can happen in Bayes NE for some information structure? 32



No Initial Information 
A particularly tractable special case of BCE arises when the players 
have no initial information (Forges: “universal Bayesian solution”). 

Then a BCE is just µ ∈ Δ (Θ × A) such that 

1. margΘµ = P, and 
0 2. ai maximizes ∑(θ,a−i ) µ (θ, ai , a−i ) ui (ai , a−i , θ) ∀i , ai . 

Since giving players more information just tightens obedience, this 
is the set of joint distributions on Θ × A that arises in any BCE (or 
any Bayes NE for any info structure). 

With 1 player and no initial info, BCE is the same as information 
design (Kamenica Gentzkow, 2011). 

However, no initial info is not always realistic. E.g., may want to 
assume that competing firms know their own production costs, 
though they may not know demand or others’costs. 33



Rationalizability in Bayesian Games 
There are three natural definitions of rationalizability in Bayesian 
games (Dekel Fudenberg Morris, 2007): 

Ex ante rationalizability: rationalizability in G (B). 

I Implicitly imposes common knowledge that players’beliefs 
about Θ × T−i are independent of their type and their beliefs 
about others’strategies (mappings from types to actions). 

Interim independent rationalizability: rationalizability in IG (B). 

I Implicitly imposes CK that, conditional on types, other 
players’actions are independent of Θ. 

Interim correlated rationalizability: drop this independence. T∞ S∞ [ti ] = =0 S
m [ti ], where S0 [ti ] = Ai and ai ∈ Sm [ti ] iff ai i m i i i 

0 maximizes ∑(a−i ,θ,t−i ) ui (ai , a−i , θ) µ (a−i , θ, t−i ) for some µ s.t. 
µ (·, θ, t−i ) is supported on Sm−1 [t−i ] and margΘ×T−i µ = p (·|ti ). −i 34
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