
Lecture 3: Signaling Games 

Alexander Wolitzky 

MIT 

14.126, Spring 2024 

1



Communication Games 

Typical structure of a communication game: a sender with private 
information takes an action (or otherwise “sends a message”) that 
is observed by a receiver, who then takes an action that affects 
both players’payoffs. 

We cover two classes of communication games: 

1. Signaling games: sender’s action set is exogenous and 
payoff-relevant (“go to college or not,” “have beer or quiche 
for breakfast”). 

2. Cheap talk games: sender’s “action” is a payoff-irrelevant 
message (“cheap talk”), we ask what can happen for any 
message set. 
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Related Models (Later in the Course) 

1. Reputation formation and bargaining: can view as kinds of 
long-run signaling games (typically, infinite horizon+patient 
players). 

2. Social learning: typically studies outcome of long-run 
observational learning/“communication”; often (not always) 
assume myopic agents so communication is non-strategic. 
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Signaling Games 

I Sender has type θ ∈ Θ (private info), with full support prior 
µ ∈ Δ (Θ). 

I Sender has exogenous finite signal (action) space S , receiver 
has finite action space A. 

I Sender observes θ, then takes s ∈ S . 
I Receiver observes s (but not θ), then takes a ∈ A. 
I θ, s, and a are all payoff-relevant: utilities are 
u1 : Θ × S × A → R, u2 : Θ × S × A → R. 

4



Strategies 

I Σ1 = (Δ (S))Θ is the set of sender behavior strategies. 
I σ1 (·|θ) is type θ’s probability distribution over signals s. 

I Σ2 = (Δ (A))S is the set of receiver behavior strategies. 
I σ2 (·|s) is receiver’s probability distribution over actions a 
after observing signal s. 

I Denote a strategy profile by σ = (σ1, σ2). 
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Best Response Correspondences 

I BR (p, s) = argmaxa∈A Ep [u2 (θ, s, a)] is set of receiver’s 
BR’s to s given belief p ∈ Δ (Θ). � � S 

I BR Θ̃, s = BR (p, s) is set of receiver’s BR’s to s p∈Δ( Θ̃) 
for some belief with support contained in Θ ˜ ⊂ Θ. � � 

I MBR (p, s) and MBR Θ̃, s are the corresponding sets for 
mixed best responses. 
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Some Applications of Signaling Games 

Job market signaling: Player 1=student/worker, Player 2=the 
labor market, θ=worker’s ability, s=worker’s education, a=wage. 

I Implication: workers get too educated to signal high ability. 

Initial public offerings: Player 1=owner of private firm, Player 
2=potential investors, θ=value of firm, s=fraction of company 
retained, a=price. 

I Implication: firms retain too much stock to signal high value. 

Monetary policy: Player 1=the Fed, Player 2=the market, θ=how 
much Fed cares about inflation, s=first period inflation, a=output 
or inflation expectations. 

I Implication: Fed is too tough on inflation today to signal it 
will be tough in the future. 
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Perfect Bayesian Equilibrium 
Defining PBE in general extensive-form games can be tricky, but 
there is a simple, standard definition of PBE in signaling games. 

Definition 
Strategy profile σ is a PBE if 

1. For each θ ∈ Θ, u1 (θ, σ) = maxs∈S u1 (θ, s, σ2 (·|s)) . S 
2. For each on-path signal s (i.e., s ∈ θ∈Θ supp σ1 (·|θ)), 

σ2 (·|s) ∈ MBR (p (·|s) , s), where p (·|s) is the posterior 
belief given s obtained by Bayes’rule. 

3. For each off-path signal s, σ2 (·|s) ∈ MBR (Θ, s). 

I (1) and (2): σ is a NE. 
I (3): R’s play at off-path info sets is sequentially rational for 
some belief. 

I R’s off-path beliefs aren’t pinned down by Bayes’rule. For 
this reason, signaling games often have many equilibria. 

I Refinements needed to restrict off-path beliefs. 8



Pooling, Separating, Semi-Separating 

PBE in signaling games can be classified as pooling, separating, or 
semi-separating. 

A PBE is pooling if all sender types take the same pure action s. 
Then receiver BR given s is σ2 (·|s) ∈ MBR (µ, s). 

I (Or maybe all types take the same mixed action.) 

A PBE is separating if each sender type θ takes a different pure 
action s (θ). Then receiver BR given s (θ) is 
σ2 (·|s (θ)) ∈ MBR (δθ, s (θ)). 

I (Or maybe all types take mixed actions with disjoint supports.) 

A PBE is semi-separating if it is not pooling or separating. 
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Job-Market Signaling (Spence 74) 

I Player 1 is a worker, observes her productivity θ ∈ R+, 
chooses education level s ∈ [0, ∞). 

I Finite set of possible types {θ1, θ2, . . . , θn }, with 
0 < θ1 < θ2 < . . . < θn. 

I Player 2 is “the labor market,” sees s but not θ, chooses a 
wage a. 

I Player 2’s payoff is − (a − θ)2. Shorthand for labor market 
setting wage equal to expected productivity, a = E [θ|s ]. 

I Player 1’s payoff is a − s/θ. Education is costly, but less so 
for more productive types. 
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PBE in the Job-Market Signaling Game 
First consider separating PBE. 

In a separating PBE, the lowest type θ1 is paid θ1. 

I Since θ1 is the lowest possible value of E [θ|s ] for any belief, 
type θ1 must take s = 0 in any separating PBE. 

I Given this, type θ2 must take s2 at least (θ2 − θ1) θ1. 
Otherwise, type θ1 would rather take s2 and get paid θ2 than 
take 0 and get paid θ1. 

I Recursively, type θk must take sk ≥ sk −1 + (θk − θk −1 ) θk . 

The strategy profile where these inequalities all hold with equality 
is the least-cost separating equilibrium (Riley 79). It’s defined 
by specifying that the lowest type takes the action that maximizes 
their utility given that their type is revealed; the next-lowest type 
takes the action that maximizes their utility given that their type is 
revealed and the lowest type does not want to copy them; etc. 

I This is the Pareto optimal separating eqm for the sender types. 11



PBE in the Job-Market Signaling Game (cntd.) 
There is a continuum of other separating equilibria. 

I Suppose player 2 believes that θ = θ1 if s < (θ2 − θ1) θ1 + ε. 
I Then it’s optimal for type θ2 to take s = (θ2 − θ1 ) θ1 + ε, 
because (for small ε) θ2 > θ1 implies that 

θ2 − ((θ2 − θ1 ) θ1 + ε) /θ2 > θ1. 

I These equilibria are Pareto dominated by the least-cost 
separating eqm. 

There is also a continuum of pooling equilibria. 

I Suppose player 2 believes that θ = θ1 if s < ε, otherwise 
θ ∼ µ. 

There are also semi-separating equilibria. 

Clearly, need some refinements/selection to make sharp predictions. 12



Equilibrium Refinements in Signaling Games 

I Banks Sobel 1987 and Cho Kreps 1987 were the first 
systematic attempts to justify particular equilibrium selection 
in signaling gmaes. 

I Both papers drew inspiration from Kohlberg Mertens 1986 
and motivated their refinements as consequences of KM’s 
strategic stability. 

I Cho Kreps also gave an informal motivation in terms of 
(unmodeled) “speeches” that deviating players could make to 
suggest how their deviations should be intepreted. 

I “Stiglitz critique”: if players can make such speeches, the 
speeches and the resulting inferences should be modeled as 
part of the game. 
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Responses to Equilibrium Multiplicity/Stiglitz Critique 
We will cover the classic eqm refinements of Banks-Sobel and 
Cho-Kreps, which remain important even though they are subject 
to the Stiglitz critique and other critiques of forward induction-type 
reasoning. 

There are also other approaches to equilibrium selection in 
signaling game that are not subject to the same critiques. We will 
cover some; more on this in 127. 

1. Assume signals are observed with noise, so there are no 
off-path information sets. (Matthews Mirman 1983, Carlsson 
Dasgupta 1997) 

2. Assume it is costly to observe signals, so off-path “belief 
threats” cannot support unreasonable pooling equilibria. 
(Denti 2021) 

3. Derive signaling game refinements from models of 
non-equilibrium learning, where the meaning of off-equilibrium 
path signals is determined by the learning process (Fudenberg 
He 2018, Clark Fudenberg 2021). 14



The Intuitive Criterion (Cho Kreps 1987) 
Fix a PBE σ and let u1 (θ, σ) be type θ’s eqm payoff. 
The set of sender types for whom a signal s is not equilibrium 
dominated is � � 

ΘIC (s, σ) = θ ∈ Θ : max u1 (θ, s, a) ≥ u1 (θ, σ) . 
a∈BR (Θ,s) 

I Set of types that can plausibly hope to do better by taking s. 
(Where “plausible”=receiver takes a BR to some belief.) 

In any PBE, for on-path signals s, receiver’s posterior p (·|s) must 
put probability 1 on ΘIC (s, σ). 
I A type θ ∈ / ΘIC (s, σ) cannot take s in any PBE, as this 
would give strictly less than u1 (θ, σ). 

Idea of Intuitive Criterion: receiver should also put probability 1 on 
ΘIC (s, σ) for off-path signals s. 
Implicit “speech” behind this idea: “I’m sending s and you should 
believe that my type is in ΘIC (s, σ), because otherwise I would 
have no reason to take s and make this speech.” 15



Intuitive Criterion (cntd.) 

Definition 
A PBE σ passes the Intuitive Criterion if, for every s ∈ S and 
θ ∈ Θ, 

min u1 (θ, s, a) ≤ u1 (θ, σ) . 
a∈BR (ΘIC (s ,σ),s) 

I LHS is the minimum that type θ can expect from sending s if 
off-path p (·|s) puts prob 1 on ΘIC (s, σ). 

I Intuitive criterion says that type θ should expect at least this 
much from taking s, so this can’t exceed θ’s eqm payoff. 
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Intuitive Criterion in Job Market Signaling 

Cho-Kreps show that the Intuitive Criterion selects the least-cost 
separating PBE in the Spence game if there are only 2 types. 

First consider separating PBE. 

I Signals s > (θ2 − θ1) θ1 are equilibrium dominated for type 
θ1. So the IC requires that these signals are attributed to type 
θ2. 

I Therefore, type θ2 never takes s > (θ2 − θ1) θ1. 
I This rules out separating PBE with “excess signaling.” 
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Intuitive Criterion in Job Market Signaling (cntd.) 
Now consider PBE where both types send some s ˆ w/ prob >0. 

I Note that receiver’s BR is never more than θ2. 
I Let s ¯ be s.t. 

θ2 − s̄/θ1 = u1 (θ, σ) = E [θ|ŝ ] − ŝ/θ1. 

Signals above s ¯ are equilibrium dominated for type θ1. 
I Since type θ1 is indifferent, type θ2 strictly prefers wage θ2 
and signal s ¯ + ε to u2 (θ, σ), for small ε. 

I Therefore, the eqm fails the Intuitive Criterion. 

This argument fails with 3 or more types. 

I For s ¯ to be equilibrium dominated for type θ1 it must be 
unprofitable for type θ1 even if it comes with wage θ3. 

I But if type θ2 deviates to s ¯ she can only count on a wage 
above θ2 (not θ3). This may not exceed her eqm payoff. 18



More Restrictive Refinements (Banks Sobel 1987) 

The set of mixed best responses to s that make type θ strictly 
prefer s to her eqm outcome is 

Dθ (s, σ) = {α ∈ MBR (Θ, s) : u1 (θ, s, α) > u1 (θ, σ)} . 

The set of mixed best responses that make type θ indifferent 
between s and her eqm outcome is 

Dθ 
0 (s, σ) = {α ∈ MBR (Θ, s) : u1 (θ, s, α) = u1 (θ, σ)} . 

Banks-Sobel propose that the receiver should put prob 0 on type θ 
after signal s if there is another type θ0 such that every MBR to s 
that makes θ willing to deviate to s makes θ0 strictly prefer to 
deviate to s: i.e., if ∃θ0 s.t. 

Dθ (s, σ) ∪ Dθ 
0 (s, σ) ⊆ Dθ0 (s, σ) . 
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Banks-Sobel 87 (cntd.) 

Under this proposal, the set of types that the receiver can put prob 
>0 on is � 
ΘD 1 (s, σ) = θ : ∀θ0 6= θ, Dθ (s, σ) ∪ D0 (s, σ) * Dθ0 (s, σ) . θ 

Definition 
A PBE σ passes D1 if, for every s ∈ S , there exists 
α ∈ MBR 

� 
ΘD 1 (s, σ) 

� 
such that 

u1 (θ, s, α) ≤ u1 (θ, σ) for all θ ∈ Θ. 

I Banks-Sobel also define a weaker variant of D1 called 
“divinity.” This requires that deviations are deterred by beliefs 
that put less weight on types outside Θ̂D 1 (s, σ) than they get 
under the prior, rather than 0 weight. 
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D1 vs. Intuitive Criterion 

D1 is more restrictive than the Intuitive Criterion in 2 ways. 

1. D1 allows fewer receiver beliefs receiver after off-path s, so 
deviating sender can count on a higher payoff: 
If s is equilibrium dominated for θ, then 
Dθ (s, σ) = D0 (s, σ) = ∅, so ΘD 1 (s, σ) ⊆ ΘIC (s, σ). θ 
This makes D1 harder to pass. 

2. For Intuitive Criterion, each deviating sender type posits the 
worst receiver BR for her own type. 
For D1, a single receiver BR must deter deviations by all 
sender types. 
This also makes D1 harder to pass. 
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D1 vs. Intuitive Criterion (cntd.) 

Cho Kreps 1987 show that D1 selects the least-cost separating 
eqm in the Spence game for any number of types. 

I If a signal s is sent with prob >0 by two types θ0 > θ, then 
0 0 0 for any s 0 > s we have Dθ (s , σ) ∪ D0 (s , σ) ⊆ Dθ0 (s , σ), so θ 

0 type θ0 breaks the PBE by sending s . 

Cho Sobel 1990 extend this result to all “monotonic” signaling 
games (all types have the same preferences over receiver MBR’s, 
higher responses are better, single-crossing). 
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NWBR 
A yet more restrictive condition is NWBR (“never a weak best 
response”; Kohlberg Mertens 1986, Cho Kreps 1987). 
NWBR says the receiver should put prob 0 on type θ after signal s 
if every MBR that makes type θ indifferent to taking s makes some 
type θ0 strictly prefer s: i.e., if [

D0 θ (s, σ) ⊆ Dθ0 (s, σ) 
θ0 6=θ 

Under NWBR, the set of types that the receiver can put prob >0 
on is ⎧ ⎫ ⎨ ⎬ [

ΘNWBR (s, σ) = θ : Dθ 
0 (s, σ) * Dθ0 (s, σ) . ⎩ ⎭ 

θ0 6=θ 

Definition 
A PBE σ passes NWBR if, for every s ∈ S , there exists � 

ΘNWBR (s, σ) 
� 

α ∈ MBR such that 

u1 (θ, s, α) ≤ u1 (θ, σ) for all θ ∈ Θ. 23



NWBR vs. D1 

Note that ΘNWBR (s, σ) ⊆ ΘD 1 (s, σ), because under D1 a pair 
(θ, s) is deleted only if some type θ0 prefers s for all MBR’s, while 
under NWBR different types θ0 could prefer s for different MBR’s. 
Hence, NWBR is more restrictive than D1. 

Results of Kohlberg-Mertens and Cho-Kreps imply that every 
signaling game has a PBE that satisfies NWBR. 
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Example: Hiring a Worker 

θ1 a1 a2 a3 θ2 a1 a2 a3 
Hire 16, 2 1, 0 −2, −1 Hire 8, 0 6, 1 −4, 0 
Pass 0, 0 0, 0 0, 0 Pass 0, 0 0, 0 0, 0 

θ3 a1 a2 a3 
Hire 4, −1 1, 0 −1, 1 
Pass 0, 0 0, 0 0, 0 

I Sender is a firm, whose signal s ∈ {Hire, Pass} is its choice of 
whether to hire a worker, who is the receiver. 

I The firm’s type is its quality, which can be high (θ1), medium 
(θ2) or low (θ3). 

I The worker’s action is how hard she works: high (a1), medium 
(a2) or low (a3). 

I Worker wants to match effort to the firm’s quality. 
I All firm types have the same ordinal preferences 
(Hire, a1) � (Hire, a2) � Pass � (Hire, a3), but different 
cardinal preferences. 25



Hiring a Worker (cntd.) 

θ1 a1 a2 a3 θ2 a1 a2 a3 
Hire 16, 2 1, 0 −2, −1 Hire 8, 0 6, 1 −4, 0 
Pass 0, 0 0, 0 0, 0 Pass 0, 0 0, 0 0, 0 

θ3 a1 a2 a3 
Hire 4, −1 1, 0 −1, 1 
Pass 0, 0 0, 0 0, 0 

There are PBE where every type plays Pass. 

I Enforced by receiver playing a3 when sender Hires, supported 
by belief that type θ3 Hires. 

I These PBE survive D1, because there is no single type that 
strictly prefers Hire whenever θ3 does. 

I But they do not survive NWBR, because whenever θ3 weakly 
prefers Hire, either θ1 or θ2 strictly prefers Hire. 
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Mixed BR vs. Mixtures over Pure BRs � � �� 
Given a set of types Θ ˜ ⊂ Θ, Δ BR Θ̃, s is the set of mixtures 
over pure best responses to s and (possibly different) beliefs with � � 
support contained in Θ̃. This is a larger set than MBR Θ̃, s . � � ˜PBE and all refinements considered so far focus on MBR Θ, s for � � �� 
various Θ̃’s, rather than Δ BR Θ̃, s . 

Intuitively, this means that deviating senders know what the 
receiver believes following each off-path signal s. 

This is part of the standard definition of PBE or sequential 
equilibrium, but it is not a necessary implication of equilibrium 
viewed as a stable outcome of a non-equilibrium learning model 

I More on this in 127, where cover self-confirming equilibrium 
and related topics. 
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Mixed BR vs. Mixtures over Pure BRs (cntd.) 

Fudenberg He 18 and Clark Fudenberg 21 derive new signaling 
game refinements as the outcomes of a non-equilibrium learning 
model with a large population of long-lived senders and receivers. 

I This approach is not subject to the Stiglitz critique, because 
off-path signals are sent with positive probability during the 
learning process. 

In Clark-Fudenberg, the learning model leads to a refinement called 
justified communication equilibrium (JCE), which is the same as � � � � 
NWBR but with MBR Θ̃, s replaced by ΔBR Θ̃, s . 

Clark-Fudenberg also show that JCE is more restrictive than the 
Intuitive Criterion in any signaling game, and that JCE, D1, and 
NWBR are all outcome-equivalent in co-monotone signaling 
games, where for each s all sender types have the same cardinal 
preferences over receiver actions. 
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Costly Monitoring (Denti 21) 

Another recent approach to signaling game refinements assumes 
that the receiver must pay a (possibly small) cost to observe the 
signal. 

So, now game is: 

I Nature draws sender’s type θ ∈ Θ, with full support prior 
µ ∈ Δ (Θ). 

I Sender observes θ, then takes s ∈ S . 
I Without observing θ or s, receiver chooses an experiment 
P : S → Δ (X ) from some set, where X is an exogenous 
outcome set. 

I Receiver observes x distributed P (·|s), then takes a ∈ A. 
I Utilities are u1 (θ, s, a) for sender, u2 (θ, s, a) − c (P) for 
receiver, where c (·) is a cost function defined on experiments. 
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No Free Information 

To differentiate costly monitoring from the standard perfect 
monitoring model, assume no free information: if experiment P 
is feasible and experiment Q 6= P is a Blackwell garbling of P, 
then Q is also feasible and c (Q) < c (P). 

This assumption is violated in standard signaling games, because 
the receiver can’t save money by ignoring the signal. 
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No Free Information (cntd.) 

No free information has the following important implication: 

Lemma 
If in any PBE the receiver chooses an experiment P such that 
P (x |s) > 0 for some x ∈ X , s ∈ S, then P (x |s 0) > 0 for some 
s 0 ∈ S that is played with positive probability (i.e., ∃θ, s 0 s.t. 
σ1 (s 0|θ) > 0 and P (x |s 0) > 0). 

I If signal x arises with positive probability only off-path, then 
the receiver can get the same joint distribution over 
Θ × S × A by deviating to an experiment Q that maps x to 
other signals. This experiment is a Blackwell garbling, so it is 
strictly cheaper. 
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Beer-Quiche Game (Cho-Kreps 87) 

The beer-quiche game has two pooling equilibria: 
(Quiche, Quiche, Don0t) and (Beer , Beer , Don0t). 

I (Quiche, Quiche, Don0t) fails the Intuitive Criterion, because 
Beer is equilibrium dominated for θw . So, IC selects 
(Beer , Beer , Don0t). 

We will show that costly monitoring also selects 
(Beer , Beer , Don0t) when monitoring costs are suffi ciently small 
(assuming no free information). 

I In general, costly monitoring (with small monitoring costs) and 
the Intuitive Criterion don’t always make the same predictions. 
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“Real Men Don’t Eat Quiche” 

Theorem 
In any PBE of the costly monitoring game, for any cost function 
satisfying no free information, σ1 (Beer |θs ) = 1. 

Suppose that σ1 (Quiche|θs ) > 0. 

I θs eats Quiche only if Pr (Duel |Beer ) > Pr (Duel |Quiche). In 
particular, Pr (Duel |Beer ) > 0 

I By the previous lemma, if Pr (Duel |Beer ) > 0 then 
Pr (Duel) > 0. (Otherwise, receiver won’t pay attention to 
signals that trigger Duel . This is the key difference from 
perfect monitoring.) 

I . . . 
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Proof (cntd.) 
Next, by single-crossing, σ1 (Quiche|θw ) = 1. 

Hence, we have σ1 (Quiche|θw ) ≥ σ1 (Quiche|θs ) and 
Pr (Duel |Beer ) > Pr (Duel |Quiche). This implies that Duel is a 
signal of θw : i.e., by Bayes’rule, 

Pr (θw |Duel) 
Pr (Duel |θw ) Pr (θw ) 

= 
Pr (Duel |θw ) Pr (θw ) + Pr (Duel |θs ) Pr (θs ) 

Pr (Duel |Quiche) Pr (θw ) 
= 

Pr (Duel |Quiche) Pr (θw ) + Pr (Duel |θs ) Pr (θs ) 
Pr (Duel |Quiche) Pr (θw ) ≤ 

Pr (Duel |Quiche) Pr (θw ) + Pr (Duel |Quiche) Pr (θw ) 
= Pr (θw ) = 1/10. 

But if Pr (θw |Duel) < 1/2, receiver should deviate to Don0t. 34



PBE with Costly Monitoring 

Since σ1 (Beer |θs ) = 1, there can be two kinds of PBE with costly 
monitoring: 

1. Separating PBE where θs takes Beer and θw takes Quiche. 
I This PBE exists if monitoring costs are high, so that receiver 
chooses not to monitor and always takes Don0t. 

2. Semi-separating PBE where θs takes Beer and θw mixes. 
I This PBE exists if monitoring costs are lower. Receiver 
monitors s with just enough noise to make θw indifferent 
between Beer and Quiche; θw randomizes to give receiver 
incentive to acquire information. 

There cannot be a pooling PBE on Beer , because receiver wouldn’t 
monitor, and then θw would deviate to Quiche. However. . . 
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Vanishing Monitoring Costs 

When monitoring costs vanish (c (P) < ε for all P, including 
perfect monitoring, ε → 0), all semi-separating PBE converge to 
(Beer , Beer , Don0t): that is, σ1 (Beer |θw ) → 1. 

I Recall that θs always takes Beer , θw takes Quiche with prob 
that makes receiver just willing to monitor. 

I When monitoring costs vanish, if σ1 (Quiche|θw ) does not 
also vanish, receiver strictly prefers to monitor. 

I Hence, σ1 (Quiche|θw ) must also vanish. 
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Flexible Information Acquisition in General Games 
A recent paper by Denti and Ravid (2023) study flexible 
information acquisition in general games. 
I Payoff-relevant parameter θ, payoff-irrelevant parameter z 
(correlated with θ). 

I Players simultaneously choose conditionally independent 
signals of (θ, z). 

I May not be conditionally independent given θ only. Indeed, the 
point of z is to allow correlated signals about θ. 

I Can choose any signal, under cost function satisfying no free 
information. 

Denti-Ravid show that the set of Bayes NE outcomes that arise for 
some cost functions is the set of separated BCE, where a BCE is 
separated if each player’s best replies to distinct signals are 
disjoint. 
I Similar logic as above: if the BR’s corresponding to distinct 
signals overlap, strictly better to pool these signals and play 
the common BR. 37
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