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Cheap Talk 

What is the effect of costless communication in strategic 
interactions with asymmetric information? 

I Formally, cheap talk games are signaling games where the 
signal (“message”) is payoff-irrelevant. Typically consider 
what’s achievable with arbitrary messages, unlike signaling 
games where the signal set is fixed. 

I In any cheap talk game, there’s a PBE where messages are 
uninformative: a “babbling equilibrium.” 

I In some games, all PBE are uninformative: e.g., game is 
0-sum, or sender always wants receiver to take a = 1 rather 
than 0. 

I Informative PBE can exist if there is some “alignment” 
between sender’s and receiver’s preferences. A theme of cheap 
talk models is that some alignment exists more often than one 
might think. 
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Plan 

1. Canonical model with 1 sender, 1 receiver, 1-dimensional state 
and action. (Crawford Sobel 82) 

2. Multidimensional state + action (Chakraborty Harbaugh 10, 
Lipnowski Ravid 20) 

3. Multiple senders (Battaglini 02, Ambrus Takahashi 08) 

4. Mutiple receivers (Farrell Gibbons 89) 

5. Multiple rounds of communication (Aumann Hart 03, Krishna 
Morgan 04) 

6. Mediated communication (Blume Board Kawamura 08, 
Goltsman et al 09) 
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Cheap Talk: General Framework 

I Sender observes state θ ∈ Θ, drawn from prior µ ∈ Δ (Θ). 
I Sender chooses a message m ∈ M. Typically ask what can be 
achieved with “suffi ciently rich” M. (Next slide.) 

I Receiver observes m but not θ, takes an action a ∈ A. 
I Preferences uS (a, θ) for sender, uR (a, θ) for receiver. 

4



How Rich is Rich Enough? 
By an argument akin to the revelation principle, it is always 
without loss to take M = Δ (A). 
I Fix any message set M and any PBE. 
I In this PBE, each message m induces some distribution over 
receiver actions αm ∈ Δ (A). 

I Now replace M with Δ (A). Have sender send αm whenever 
she sent m in the original PBE. Have receiver take αm 

following each on-path message αm , take an arbitrary fixed 
αm0 following any off-path message α. 

I It’s optimal for receiver to take αm when sender says αm , as 
his belief is the same as it was following m in the original 
PBE. (Can interpret off-path messages α as if they were αm0 .) 

I It’s optimal for sender to send αm whenever she sent m in the 
original PBE, as the set of mixed receiver actions she can 
induce is weakly smaller. 

In many cheap talk settings, can take M much smaller than this, 
such as M = A or M = Θ. 5



Comparison with Other Communication Models 

Receiver cannot commit to a decision rule (map from messages to 
actions). This makes cheap talk different from screening or 
delegation. (Holmström 84, Alonso Matouschek 08) 

I More outcomes are implementable under delegation, because 
delegation eliminates receiver’s IC constraint. 

Sender cannot commit to a disclosure policy (map from states to 
distribution over messages). This makes cheap talk different from 
Bayesian persuasion. (Kamenica Gentzkow 11) 

I More outcomes are implementable under Bayesian persuasion, 
because BP eliminates sender’s IC constraint. 

Set of feasible messages does not depend on the state. This makes 
cheap talk different from models with verifiable (“hard”) 
information. (Grossman 81, Milgrom 81) 
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Other Communication Models (cntd.) 

One can think of many other variants that affect commitment in 
some way. E.g., under mediated communication, Sender commits 
in advance to the design of a noisy communication channel, but 
then chooses what to input to the channel. (Or R designs channel.) 

Yet more variants arise if Receiver also has private information 
(e.g., can Sender elicit it before communicating her own 
information?), if Sender’s private information is endogenous (e.g., 
when does Receiver benefit form Sender being well-informed? when 
does Sender benefit from Sender being well-informed, if Receiver 
knows Sender’s info structure?), or if communication is combined 
with other incentive instruments (e.g., transfers, fines, delegation). 

Due to revival of interest in communication following Bayesian 
persuasion, and fact that the Bayesian persuasion commitment 
assumption is often inappropriate, there is much current interest in 
different models of communication under various assumptions. 
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PBE 

PBE definition is as in signaling games: 

Definition 
A perfect Bayesian equilibrium (PBE) consists of a strategy 
σ ∈ Δ (M)Θ for the sender, a strategy α ∈ AM for the receiver, 

M and a belief system µ ∈ Δ (Θ) for the receiver, such that 

1. Sender IC: For all θ, 
σ (m|θ) > 0 =⇒ m ∈ argmaxm∈M uS (θ, α (m)). 

2. Receiver IC: For all m, 
α (a|m) > 0 =⇒ a ∈ argmaxa∈A uR (µ (m) , a). 

3. Bayes’consistency: For all on-path m, µ (m) is given by 
Bayes’rule. 
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Babbling, Fully Revealing, Partially Revealing 
In a babbling equilibrium, σ (·|θ) is independent of θ, and the 
receiver takes a best response given the prior. 
I A babbling equilibrium always exists. 
I A non-babbling equilibrium is called informative. 

In a fully revealing equilibrium, the supports of σ (·|θ) and � � 
σ ·|θ0 are disjoint for all θ 6= θ0, and the receiver takes a best 
response aR (θ) given the true state. 
I If receiver’s BR argmaxa∈A uR (a, θ) is unique for each θ, a 
fully revealing equilibrium exists iff � � � � 
uS (aR (θ) , θ) ≥ uS aR θ0 , θ for all θ, θ0 . 

An equilibrium that is neither babbling nor fully revealing is called 
partially revealing. 

Babbling / fully revealing / partially revealing equilibria are 
analogous to pooling / separating / semi-separating equilibria in 
signaling, but in cheap talk emphasize partially revealing equilibria. 9



Some Special Cases 

Common interests: uS (a, θ) = uR (a, θ) for all a, θ. (More 
generally, S and R have same ordinal preferences over a for each 
θ.) A fully revealing equilibrium exists. 

Opposing interests (0-sum game): uS (a, θ) = −uR (a, θ) for all 
a, θ. All equilibria are payoff-equivalent to babbling. 

I Does not extend to the case where S and R have opposite 
ordinal preferences but not opposite cardinal preferences. 

I Schelling 1960 already noted the difference in cheap talk’s 
impact with common vs. opposed interests. Thinking about 
intermediate cases was the impetus for Crawford Sobel 1982. 

� � 
State-independent sender preferences: uS (a, θ) = uS a, θ

0

for all a, θ, θ0 . An informative equilibrium may exist, but in every 
equilibrium S is always indifferent over all messages that are ever 
sent with positive probability. 
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Special Cases (cntd.) 

Quadratic preferences: Θ, A ⊂ R, and there is some “bias” 
b > 0 such that 

uR (a, θ) = − (θ − a)2 , uS (a, θ) = − (θ + b − a)2 . 

Both parties’utilities determined by the expected residual variance: 

E [uR (a, θ)] = −Em [Var (θ|m)] , 
E [uS (a, θ)] = −Em [Var (θ|m)] − b2 . 

I With quadratic preferences, regardless of b, S and R have the 
same preferences over equilibria: both prefer more informative 
equilibria, in the sense of lower expected residual variance. 
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Finite-State Example 

Consider quadratic preferences with Θ = {0, 1/4, 1/2, 3/4}, 
A = [0, 1], full-support prior, b = 3/16. 

There is no fully revealing equilibrium. 

I If there were, R would take a = θ for each θ. 
I But then type θ = 0 S could send message of type θ = 1/4. 
This gives a loss of (1/16)2 instead of (3/16)2, so it’s a 
profitable deviation. 
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Finite-State Example (cntd.) 
Now consider a partially revealing “interval equilibrium,” where 
types 0 and 1/4 send one message (call it m1), and types 1/2 and 
3/4 send another messsage m2 6= m1. 
I Sender IC requires that type 1/4 prefers 
a1 = E [θ|θ ∈ {0, 1/4}] to a2 = E [θ|θ ∈ {1/2, 3/4}]. 

I (This implies that type 0 also prefers a1 to a2. Types 1/2 and 
3/4 always prefer a2 to a1, since b > 0.) 

I Type 1/4’s prefers whichever of a1 and a2 is closer to 7/16. 
I This is indeed a1 if the prior is s.t. 1/4 is likely compared to 0 
(so a1 is close to 1/4) and 3/4 is likely compared to 1/2 (so 
a2 is close to 3/4). If instead 1/4 and 3/4 are unlikely, there 
is no informative interval equilibrium. 

Alternatively, suppose the states are equally likely and vary b > 0. 
I A fully revealing equilibrium exists if b is suffi ciently small. 
I This relies on discrete states, so S can’t shade “just a bit.” 
I If fix b and take the grid finer, eventually break the fully 
revealing equilibrium. 13



Continuous State and Actions (CS 82) 

CS 82 consider Θ = A = [0, 1] and a class of preferences that 
generalizes quadratic. 

I uS , uR are twice continuously differentiable, strictly concave in 
0 a, and satisfy strict single-crossing in (a, θ): for a < a , 

θ < θ0 , i ∈ {S , R}, we have � � � � 0 0 ui (a, θ) = ui (a , θ) =⇒ ui a, θ
0 < ui a , θ

0 . 
I For each θ, let aS (θ) , aR (θ) denote the preferred actions of 
S , R given θ. (Given above assumptions, these are uniquely 
defined, continuous, and increasing.) Also, let aR ( µ̃) be R’s 
optimal action at belief µ ˜ ∈ Δ (Θ). 

I Assume that there exists ε > 0 such that aS (θ) > aR (θ) + ε 
for all θ. 
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Interval Partition Equilibria 

For each θ0 ≤ θ00, let � � � � �� 
aR θ0 , θ00 = argmax E uR (a, θ) |θ ∈ θ0 , θ00 . 

a∈A 

I aR is continuous and strictly increasing in each argument. 

A triple (σ, aR (·, ·) , µ) is an interval partition equilibrium if 
there exists a partition of [0, 1] into intervals {[θn−1, θn ]}Nn=1 with 
θ0 = 0 and θN = 1 such that, for all n ∈ {1, . . . , N}, if 
θ ∈ [θn, θn+1] then 

1. Each message of S conditional on θ reveals that the state lies 
in [θn , θn+1] (and no further information). 

2. Each action of R conditional on θ equals aR (θn , θn+1). 
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All PBE are Interval Partitional 

Lemma 
Every PBE is an interval partition equilibrium, and the number of 
intervals in any such equilibrium is bounded. 

Proof. Fix an arbitrary PBE. 

I For each a ∈ [0, 1], let M (a) = {m ∈ M : α (m) = a}. 
(Possibly empty. Note that α (m) = E [θ|m], and hence is 
pure.) 

I Say that θ induces a if θ assigns prob >0 to a message in 
M (a). 

I Let A ˆ be the set of actions induced by any type. Note that if 
0 θ induces a then uS (a, θ) ≥ uS (a , θ) for all a0 ∈ Â. 

I Since uS is strictly concave in a, each type θ can induce at 
most two actions. 
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Proof (cntd.) 

0 We show that a0 − a > ε for all a, a0 ∈ A ˆ s.t. a < a . 
(Recall: aS (θ) > aR (θ) + ε ∀θ.) 

0 I Note that there exists θ ∗ s.t. uS (a, θ ∗ ) = uS (a , θ ∗ ). 
This follows because there exist θ ≤ θ0 s.t. � � � � 0 ≤ uS 

0 uS (a, θ) ≥ uS (a , θ) and uS � a, θ� 0 a , θ0 , so by 
continuity there exists θ ∗ ∈ θ, θ0 where they’re equal. 

I By strict single crossing of uS , a ≤ aS (θ ∗ ) ≤ a0, and each 
type θ < θ ∗ strictly prefers a to a0, and vice versa for θ > θ ∗ . 

I So, R’s beliefs have support Θ (a) ⊂ [0, θ ∗ ] when he takes a, 
0 and support Θ (a0) ⊂ [θ ∗ , 1] when he takes a . 

0 I By single crossing of uR , this implies that a ≤ aR (θ ∗ ) ≤ a . 
I We have aS (θ ∗ ) ∈ [a, a0], aR (θ ∗ ) ∈ [a, a0], and 
aS (θ ∗ ) − aR (θ ∗ ) > ε. So, a0 − a > ε. � � 

In particular, � A ˆ � < 1/ε. 
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Proof (cntd.) 

We showed that for all a < a0, there exists θ ∗ s.t. Θ (a) ⊂ [0, θ ∗ ] 
and Θ (a0) ⊂ [θ ∗ , 1]. 

I The convex hulls of the sets of states that induce distinct 
actions do not overlap (except at a single boundary point). 

I Since each state induces some action, the supports of states 
that induce distinct actions must be disjoint intervals, which 
partion [0, 1]. 

And, since 
��Â 

�� < 1/ε, there are at most 1/ε such intervals. 
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Equilibrium Characterization 

Theorem 
N A partition {[θn−1, θn ]}n=1 constitutes a PBE if and only if 

θ0 = 0, θN = 1, and for every n ∈ {1, . . . , N − 1}, 

uS (aR (θn−1, θn ) , θn ) = uS (aR (θn, θn+1 ) , θn ) . 

¯In addition, there exists N ≥ 1 such that there exists a PBE with 
¯N intervals if and only if 1 ≤ N ≤ N. 
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Remarks 

I Continuum of IC constraints for S and R reduces to 
indifference for cutoff sender types and a = aR (θn, θn+1 ). 
Indifference for cutoff sender type suffi ces for sender IC by 
strict single-crossing. 

I Indifference condition together with θ0 = 0, θN = 1 
determines {θ1, . . . , θN −1} as a solution to a 2nd-order 
difference equation. 

I There can be multiple solutions for the same N. The last part 
of the theorem follows because whenever a solution exists for 
N intervals, another solution exists for N − 1 intervals. 
(Original CS proof of this actually contains an error. 
Corrected by Kandori Kono 19.) 

I In the quadratic preferences case, S and R have aligned 
preferences over PBE, with lower-residual variance equilibria 
better for both. In this case higher-N equilibria Pareto 
dominate lower-N equilibria. 
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Quadratic Preferences Example 
Consider quadratic preferences with θ ∼ Uniform [0, 1]. 

With quadratic preferences, aR = E [θ|m]. So, with quadratic 
preferences + uniform state, aR (θn , θn+1) = (θn + θn+1) /2. 

So, cutoff sender type indifference becomes � �2 � �2 θn−1 + θn θn + θn+1 − θn − b = − θn − b , 
2 2 

which simplifies to 

an+1 = 2an − an−1 + 4b. 

This difference equation implies that the maximum number of 
¯intervals N is decreasing in b. 

I This yields a key take-home message of CS 82: more aligned 
preferences =⇒ more scope for informative communication. 

I An important goal of the cheap talk literature is understanding 
how this messages generalizes to richer environments. 21



Equilibrium Selection 

CS 82 informally argued that it’s natural to focus on the most 
informative (highest N) equilibrium. 

Chen Kartik Sobel 08 provide some formal support for this. 

Say that a PBE satisfies no incentive to separate (NITS) if type 
0 sender would not benefit from revealing her type (if she could): 
that is, uS (aR (0, θ1) 0) ≥ uS (aR (0) 0). 

Intuition: since Sender is biased up, seems natural that she can 
credibly “confess” to having the lowest possible type. 

CKS show that every equilibrium with

¯

N̄ intervals satisfies NITS, 
and that under an additional condition (which holds in the 
uniform-quadratic case) there is a unique equilibrium with N 

N intervals for each N ≤ N̄, and only the equilibrium with
intervals satisfies NITS. 

22



Equilibrium Selection (cntd.) 
Moreover, when M = [0, 1] (so messages can have “literal 
meanings”), CKS show that NITS holds in every equilibrium that 
satisfies two conditions: 

1. Monotonicity: m (θ) and a (m) are both non-decreasing. 

2. “Grain of honesty/gain of credulity”: Either one of the 
following holds: 

2.1 There exist probabilities σ, ρ > 0 such that with probability σ 
Sender non-strategically takes m (θ) = θ ∀θ, and with 
independent probability ρ Receiver non-strategically takes 
a (m) = m ∀m, and we take the limit as σ, ρ → 0. 

2.2 Sender’s preferences include a “lying cost”: sender’s utility is 
uS (a, θ) − kC (m, θ) for k > 0, C continuous, ∂C /∂m < 0 if 
m < θ, ∂C /∂m > 0 if m > θ, and we take the limit as k → 0. 

To what extent one can select NITS / most informative 
equilibrium using only monotonicity or “grain of honesty”-type 
assumptions (rather than both together) is not clear. 23



Multidimensional State + Action 

From the perspective of general communication games, CS’s 
1-dimensional state + action model is quite special. 

Another tractable model is to allow multidimensional Θ and A, but 
assume sender’s preferences are state-independent: 
uS (a, θ) = uS 

� 
a, θ0

� 
∀a, θ, θ0 . 

I E.g. sender just wants a high wage, or just wants receiver to 
accept her proposal. 

I This model is studied by Chakraborty Harbaugh 07, 10; 
Lipnowski Ravid 20. 

I Key idea: sender must get same payoff from all equilibrium 
messages, but this still leaves room for informative 
communication. 
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Chakraborty Harbaugh: Example 

I Sender is a seller with 2 goods to sell to a buyer (Receiver), 
who can buy at most 1. 

I Sender gets payoff of 1 if Receiver buys, 0 otherwise. 
I Good i has value vi ∼ U [0, 1] for buyer, independent across 
goods. Sender knows (v1, v2). 

I Buyer’s utility of not buying is ε ∼ U [0, 1]. Buyer knows ε. 
I Is cheap talk valuable? 
I Yes: suppose sender reports which vi is higher. 
I Then buyer buys good with higher vi with prob 

E [max {v1, v2}] = 2/3, vs. 1/2 without cheap talk. 
I Both parties are better off than without cheap talk. 
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Chakraborty Harbaugh: Main Result 

Main result: informative equilibria exist very generally when 
dim Θ ≥ 2 and aR = E [θ|m] (quadratic Receiver preferences). 
Theorem 
Assume that Θ ⊂ Rd with d ≥ 2 and Θ is compact, convex, and 
has non-empty interior; the prior µ has a full support density; 
aR = E [θ|m]; and uS is state-independent and continuous. Then 
an informative equilibrium exists. 

Idea: communicate about a direction orthogonal to Sender’s bias. 
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Proof 

I Fix any point θ0 ∈ int (Θ). For any unit vector λ ∈ Rd , let 
Hλ be the hyperplane through θ0 with normal vector λ. 

I Hλ partitions Θ into two positive-probability sets, 
Θ− = {θ : λ · θ < λ · θ0} and Θ+ = {θ : λ · θ > λ · θ0} λ λ 
(excluding the 0-prob boundary). � � � � − + I Let a = E θ|θ ∈ Θ− and a = maxa∈A E θ|θ ∈ Θ+ . λ λ λ λ 
Note that these are continuous in λ. � � � � 

+ − I Let ΔS (λ) = uS a a . If we can find λ such that λ − uS λ 
ΔS (λ) = 0, we will have found an informative equilibrium. 

I Note: this conclusion uses state-independent sender 
preferences. 
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Proof (cntd.) 

I Note that ΔS (λ) is a continuous function on the unit sphere. 
I By the Borsuk-Ulam theorem, there exists λ ∗ such that 

ΔS (λ ∗ ) = ΔS (−λ ∗ ). 
I (Borsuk-Ulam: for any continuous function f : Sn → Rn , 
there exists x ∈ Sn such that f (x) = f (−x).) 

I Note also that, for all λ, a+ = a− , and hence λ −λ
ΔS (−λ) = −ΔS (λ). 

I Hence, ΔS (λ ∗ ) = −ΔS (λ ∗ ) = 0. 
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Ranking Equilibria 
Clearly, Receiver prefers any informative equilibrium to the 
babbling equilibrium. 

So does Sender, when her preferences are quasi-convex. 

I If actions a1, . . . , aN are induced in an informative equilibrium, 
by Receiver IC the action a0 induced in the babbling 
equilibrium satisfies 

a0 = E [θ] = E [E [θ|m]] = E [a (m)] , 

where a (m) ∈ {a1, . . . , aN } is the action taken at message m 
in the informative equilibrium. In particular, a0 lies in the 
convex hull of a1, . . . , aN . 

I By quasi-convexity, uS (a0 ) ≤ maxn uS (an ). 
I By Sender IC, uS (a1 ) = . . . = uS (aN ). 
I So Sender prefers the informative eqm. 
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Ranking Equilibria: Remarks 

This argument uses Sender indifference. If we only knew that 
a0 = E [a (m)], we could conclude that Sender prefers the 
informative equilibrium only if her preferences are convex, not just 
quasi-convex. 

Punchline: if Sender’s preferences are quasi-convex, then both 
parties prefer more informative equilibria, as in CS. 

Conversely, Sender prefers the babbling equilibrium if preferences 
are quasi-concave. 

I Not clear if informative equilibria are reasonable in this case, 
as they violate Sender’s “right to remain silent.” 
However, standard refinements don’t eliminate them. 
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Lipnowski Ravid 

Lipnowski Ravid provide a geometric characterization of Sender’s 
best equilibrium payoff in Chakraborty Harbaugh’s model with 
general receiver preferences. 
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Lipnowski Ravid: Example 
1 θ ∈ {1, 2}, µ (1) = µ (2) = 2 , a ∈ {0, 1, 2}, uS (a) = a, 

1 uR (0, θ) = 0, uR (a 6= 0, θ 6= a) = −1, uR (a 6= 0, θ = a) = 3 . 

I S likes higher actions; R takes a 6= 0 iff Pr (θ = a) ≥ 34 . 

Since S must get same payoff from all equilibrium messages and 
can’t always make R willing to take action 2, S’s equilibrium payoff 
can’t exceed 1. 

1 S can get 1 with M = {1, 2}, σ (2|1) = 3 , σ (2|2) = 1. 

I Then R takes action 1 after message 1, R is indifferent after 
message 2 and mixes 50-50. 

If S had commitment power, would be an eqm for S to commit to 
1 σ (2|1) = 3 , σ (2|2) = 1, R to take action 2 after message 2. 

2 5 I S’s commitment payoff is 1 · 1 + · 2 = 3 . 3 3 
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Lipnowski Ravid: Main Result 

For any posterior belief of the receiver µ ˜ ∈ Δ (Θ), let 
v ( µ̃) = uS (aR ( µ̃)), the sender’s indirect utility from inducing this 
posterior. This defines a function v : Δ (Θ) → R. 

Let v ¯ : Δ (Θ) → R and v ˆ : Δ (Θ) → R be the quasi-concave 
envelope and the concave envelope of v , respectively. 

I v ¯ is the smallest quasi-concave function that is everywhere 
greater than v ; similarly for v̂S . 

I For all µ̃, we have v ( µ̃) ≤ v ¯ ( µ̃) ≤ v ˆ ( µ̃). 

Lipnowski-Ravid’s main result is 

Theorem 
The sender’s best equilibrium payoff is v ¯ ( µ̃). 
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Comparison to Bayesian Persuasion 

Kamenica Gentzkow 11 (cf. Aumann Maschler 95) show that if the 
sender can commit to any communication rule (conditional 
distribution over messages; experiment), her best equilibrium 
payoff is v ˆ (µ). 

I Can’t do better than v ˆ (µ), because E [ µ̃] = µ by “Bayes’ 
plausibility” (beliefs are martingale), and hence 

E [v ( µ̃)] ≤ E [ v ˆ ( µ̃)] ≤ v ˆ (µ) . |{z} |{z} 
v ≤ v ˆ v ˆ concave, Jensen 

I Can get v ˆ (µ), because there exists a distribution of µ ˜ such 
that E [ µ̃] = µ and E [v ( µ̃)] = v ˆ (µ), and any such 
distribution is induced by some experiment. (This is called the 
splitting lemma, usually attributed to Aumann-Maschler.) 
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Lipnowski Ravid (cntd.) 

Intuition for Lipnowski Ravid’s result: 

I Can’t do better than v ¯ (µ), because this requires a 
communication rule that induces µ̃, µ̃0 s.t. v ( µ̃) < v ( µ̃0). 
Such a rule is not IC for Sender. 

I Can get v ¯ (µ), because there exists a distribution of µ ˜ such 
that E [ µ̃] = µ and v ( µ̃) = v ¯ (µ) for all µ ˜ in the support, and 
any such distribution is induced by some communication rule 
(and such a rule is IC for Sender). 

Comparing to Bayesian persuasion, we see that the sender’s “value 
of commitment” is v ˆ (µ) − v ¯ (µ). 

If no-disclosure is suboptimal with commitment, Sender typically 
does strictly better with commitment than without. 
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Purification 

Critique of cheap talk with state-independent sender preferences: 
informative equilibria may not be purifiable. 

Recall: a mixed equilibrium is purifiable if it is a limit of pure 
equilibria in games with independent payoff perturbations. 

In CH, LR, sender mixes with different probabilities depending on 
θ, which she doesn’t care about. 

If perturb sender’s preferences on A, it seems that her messages 
should be driven by these perturbations, not θ. 

So robustness of informative equilibria in CH, LR is not clear. 

Investigating this issue could be a good paper topic. 
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Multiple Senders 

In many settings a decision-maker (Receiver) gets information from 
multiple advisors (Senders). 

I Does “competition” between the senders leads to more info 
transmission? 

I If so, limited info transmission results of CS and others may 
be questioned. 

This question is studied by Battaglini 02, Ambrus Takahashi 08. 
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Shooting the Senders 
Say an action a is rationalizable if a = aR ( µ̃) for some 
µ ˜ ∈ Δ (Θ). 

∗ Suppose that there is a rationalizable action a such that, for each 
∗ sender Si (i ∈ {1, 2}) and each state θ, uSi (a , θ) ≤ uSi (a, θ) for 

every rationalizable action a. 
I Not necessarily a realistic assumption, but illustrative. 

Then there always exists a fully-revealing PBE: 
I Senders announce θ honestly. 
I If they agree, Receiver takes a = aR (θ). 
I If they disagree, Receiver believes that θ ∼ µ ˜ that rationalizes 

∗ a ∗, and takes a . 

In the CS model with 2 senders with different biases, there is no 
single “shoot the senders” action that works, but a similar 
argument works whenever Θ and A are large compared to the 
senders’biases: if m1 6= m2, Receiver believes that θ is extreme 
and takes an extreme action that is bad for both senders. 38



Ambrus Takahashi 08 

Ambrus Takahashi extend this logic to give general conditions for 
the existence of a fully-revealing equilibrium. 

Theorem 
There exists a fully-revealing PBE iff, for all pairs of states 
θ1, θ2 ∈ Θ, there exists a rationalizable action a ∈ A such that 
ui (aR (θj ) , θj ) ≥ ui (a, θj ) for all i 6= j ∈ {1, 2} . 

I Suppose a is taken when the reports are (θ1, θ2 ). 
I The condition says that when the true state is θj , player i 
would rather report it truthfully and get aR (θj ) than 
misreport it as θi and get a. 
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Robust Equilibria 

“Shoot the senders” equilibria do not seem very robust. 

Battaglini considers a refinement where each Sender observes a 
random state θ ˜ (e.g., θ ˜ ∼ Uniform (Θ)) with prob ε and takes 
ε → 0. 

If the senders’biases are suffi ciently large, there is no robust 
fully-revealing PBE in the 1-dimensional CS model. 

Battaglini’s main result: for generic Sender biases, there is a robust 
fully-revealing PBE in the d-dimensional CS model for any d ≥ 2. 
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Full Revalation for d>=2 
2 Suppose Θ = A = Rd , uR (a, θ) = − ∑d

j =1 (aj − θj ) , 
uSi (a, θ) = − ∑d

j =1 (aj + bi ,j − θj )
2, where bi ∈ Rd is Sender i’s 

bliss point. 

Theorem 
For any d ≥ 2 and any b1, b2 such that b1 6= αb2 ∀α ∈ R, there 
exists a robust fully-revealing PBE. 

I Each Sender i reports projection of θ onto the hyperplane 
orthogonal to bi . 

I When b1, b2 are linearly independent, the reports pin down θ, 
and Receiver takes aR (θ). 

I Each Sender is indifferent among all reports, and so is willing 
to report truthfully. 

I Also, every pair of reports is sent on-path, so the equillibrium 
is robust. 
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Another Result from Ambrus Takahashi 08 

Ambrus Takahashi’s motivation was that Battaglini’s argument 
relies on Θ and A being unbounded (or bounded product sets). 

I Suppose Θ = A = 
� 

θ ∈ R2 : θ1 + θ2 ≤ 1 . Not all 
combinations of θ̂1, θ̂2 are possible. 

I Suppose b1 = (1, 0), b2 = (0, 1). Intuitively, if we try to do 
something similar to Battaglini while respecting feasibility, S1 
will shade down report of θ2 to make larger θ1’s feasible. 

They show that if A = Θ is a smooth compact set in Rd , d ≥ 2, 
aR (θ) = θ, and b1 and b2 are not co-linear, then there is no 
robust fully-revealing PBE. 

Remark: Battaglini and Ambrus-Takahashi both focus on when a 
(robust) fully-revealing PBE exists. This is an extreme type of 
result. More realistically, there should only be partial info 
transmission even with multiple senders. There seems to be little 
work on this. 42



Multiple Receivers 

Cheap talk with multiple receivers also raises new issues. For 
example, should communication be public or private? 

I Public communication can improve credibility. If Sender is 
biased up compared to Receiver 1 and down compared to 
Receiver 2, truthful communication may be IC when it’s 
public. 

I But private communication is more flexible. If Sender and 
Receiver 1 have the same preferences but Receiver 2 is very 
biased, with private communication can have info transmission 
to Receiver 1 together with babbling to Receiver 2, but with 
public communication the only equilibrium may be babbling. 

These issues are studied by Farrell Gibbons 89, Goltsmann Pavlov 
11. We skip these papers. 
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Multiple Rounds of Communication 

The CS model restricts to 1 round of communication. 

I At first this appears to be without loss, since Receiver doesn’t 
have private info. 

I However, random messages from Receiver can serve as a 
correlating/randomization device. Can this help? 

I If so, can it be even better to have many rounds of 
communication and randomization? How would this work? 

This is studied by Krishna Morgan 04, Aumann Hart 03. 
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Jointly Controlled Lotteries 
An important idea in both papers is that of a jointly controlled 
lottery (which goes back to Aumann Maschler in the 60s). 

By simultaneously sending cheap talk messages, players can 
simulate a public randomizing device in an incentive compatible 
manner. 
I Suppose each player i names a number ni ∈ {0, . . . , 99}, and 
we define the “output” of the pair (n1, n2 ) as 
n1 + n2 mod 100. 

I Suppose each player is expected to choose ni uniformly at 
random. Then, from the perspective of each player i , the 
output is uniform on {0, . . . , 99} regardless of her choice of ni . 

I So, regardless of how the output maps into the players’future 
play, it is optimal for each player to choose 
ni ∼ Uniform {0, . . . , 99} when she believes the other is doing 
so as well. 

I The players can therefore use cheap talk to simulate public 
randomization. 45



Krishna Morgan 04 
Krishna Morgan show that in the CS linear-quadratic model, 
effi ciency can be improved if first Receiver sends a message, then 
public randomization occurs, and then Receiver sends another 
message. 
I Using jointly controlled lotteries, can replace public 
randomization with a round of “face-to-face communication” 
between the parties. 

I At first glance this is quite surprising, as there is no “obvious” 
role for multi-round communication in CS. 

Intuition: Subsequent public randomization exposes Sender to risk: 
she may get a chance to reveal more info, or she may not. 
I With convex loss functions, this risk is especially painful for 
extreme Sender types. 

I So extreme Sender types will “confess” to avoid exposure to 
risk. The remaining types can then communicate a la CS 
when public randomization allows them to do this. 

I Sometimes on net this beats the best CS equilibrium. 46



	

Krishna Morgan: Example 
Suppose b = 1 The best CS equilibrium partitions [0, 1] into two � 10 � . � � 
intervals, 0, 3 and 3 . 10 10 , 1 

Consider the following multi-round equilibrium: 
I First, Sender reveals whether θ is greater or less than 15 . 
I Then, public randomization occurs and either succeeds (prob 
p) or fails (prob 1 − p). 

I If it succeds and θ > 1 , Sender further reveals whether θ is 5 
greater or less than 25 . 

If p = 1, we would be back to CS, with partition �� � � � � � 1 1 2 2 0, , 5 , , 5 , 1 . This is not an equilibrium, because type 5 5 � � 1 1 2 
5 Sender strictly prefers 5 , 5 . 

1 But with p < 1, type 1 Sender takes a risk if she reports θ > in 5 � � 5 1 Round 1, because if pub rand fails she gets stuck with 5 , 1 . 
5 I Can calculate that setting p = makes the type 1 Sender 9 5 

indifferent, and the resulting equilibrium Pareto-dominates the 
best CS equilibrium. 47



Remarks 

Krishna Morgan show that an equilibrium of this form 
Pareto-dominates the best CS equilibrium whenever b < 18 . 

When b ≥ 1 , equilibria of this form still exist, but they are less 8 
effi cient that the best CS equilibrium. � � 

1 1When b ∈ 8 , √ , Krishna Morgan construct a different, 
8 

non-monotone equilibrium that Pareto-dominates the best CS 
equilibrium. 
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Aumann Hart 03 

Aumann Hart consider general (finite) 2-player games where one 
player has private info. 

I Allow unboundedly many rounds of simultaneous bilateral 
cheap talk, prior to play of a 1-shot game. 

I Finiteness implies doesn’t formally nest CS / Krishna Morgan, 
but conceptually much more generally. 
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Aumann Hart 03: Main Results 

1. Without loss to consider strategies where in odd periods 
Sender unilaterally sends a message to Receiver, in even 
periods Sender and Receiver play a jointly controlled lottery. 

I Krishna Morgan’s construction had 3 periods: message, JCL, 
message. 

2. Geometric characterization of the set of PBE payoffs in terms 
of the “di-span” of the NE payoffs of the game without cheap 
talk. 

I This is a convexification-type procedure, somewhat similar to 
the quasi-convex envelope in Lipnowski Ravid. (Question: is 
there a simple way to explain the relationship?) 

I Much more general than Krishna Morgan’s analysis, but the 
characterization seems hard to apply outside simple examples. 
So the papers are complementary. 
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Mediated Communication 
Cheap talk is a fairly extreme model, in that there are no available 
commitment devices that might improve credibility. We can learn 
something about how different “communication institutions” work 
by comparing them with cheap talk. 

Goltsman Hörner Pavlov Squintani 09 compare three 
communication protocols in the CS linear-quadratic setting: 

I Negotiation: Long cheap talk, as in Krishna Morgan 04 
I Mediation: There is a trusted mediator with commitment 
power. Sender sends message to mediator, who then sends 
message to Receiver. (Equivalent to designing a system to 
add noise to Sender’s message.) This can relax Sender’s IC. 

I Arbitration: Like mediation but now the mediator directly 
takes a decision, rather than communicating to Receiver. This 
relaxes Receiver’s IC in addition to Sender’s. 

I This is equivalent to delegating decision to Sender. 
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Comparing Communication Protocols 

In general, the set of implementable equilibrium outcomes 
(mappings Θ → Δ (A)) under different communication protocols 
satisfies 

no communication: a independent of θ 

⊂ 1-shot cheap talk 

⊂ negotiation 

⊂ mediation � � 
arbitration/delegation, ⊂ 
Bayesian persuasion | {z } 

non-nested 

⊂ “integration”: arbitrary a (θ) . 
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Arbitration/Delegation 
An arbitration rule is a mapping aR : Θ → Δ (A) satisfying � � � � 
Sender IC: uS (aR (θ) , θ) ≥ uS aR θ0 , θ for all θ, θ0 . 

In the CS setting, the arbitration rule that maximizes Receiver’s 
expected utility takes the form of upward censorship: 
aR (θ) = min {θ + b, ā} for some a ¯ ∈ [0, 1]. 
I Sender can choose any action she pleases up to ā. 
I The solution is intuitive: since Sender is upward-biased, 
Receiver should prohibit the highest actions (while prohibiting 
intermediate actions just adds variance). 

I This was first proved by Holmström 77 and Melumad Shibano 
91 (cf. Alonso Matouschek 08), albeit restricting to 
deterministic arbitration rules. GHPS show that in the 
uniform-quadratic model, it’s optimal to set a ¯ = 1 − b if 

1 1 b < , and otherwise set a ¯ = (i.e., only allow action 1 ; this 2 2 2 
is the outcome of the babbling equilibrium). 

I Can be proved using the envelope characterization of Sender 
IC (e.g., Myerson 81). 53



Mediation 

As compared to arbitration, mediation adds Receiver IC: 
0 0 E [uR (a, θ) |a] ≥ E [uR (a , θ) |a] for all on-path a, all a . 

For b < 1 (the non-trivial case), GHPS show that there exists an 2 
optimal mediation rule where the mediator randomizes between 
two actions in each state, with probability independent of the state: 

N there exists a probability p ∈ (0, 1), intervals {[θn−1, θn ]}n=1, and 
N actions {an }n=1 such that, when θ ∈ [θn−1, θn ], the mediator 

recommends action b with prob p and recommends action an with 
prob 1 − p, where a1 = b and an > b ∀n > 1. 
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Mediation: Remarks 

I As in the 2-stage equilibrium of Krishna Morgan 04, 
introducing randomness relaxes Sender’s IC constraint, at the 
cost of making the final message received by Receiver less 
informative. 

I The same mechanism appeared earlier in Blume Board 
Kawamura 08, who interpreted it as introducing a probability 
p that Sender’s message gets lost. They showed that such 
“noisy talk” can improve on the best CS equilibrium. But 
they didn’t show that this is actually an optimal equilibrium 
with arbitrary mediation. 

I The optimal mechanism of BBK and GHPS is not uniquely 
1 optimal. When b < 8 , Krishna-Morgan’s 2-stage equilibrium 

gives the same expected payoffs. 
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Negotiation/Long Cheap Talk 

GHPS show that Krishna-Morgan’s 2-stage equilibrium gives the 
same payoffs as optimal mediation when b < 1 , so in this case 8 
optimal negotiation and optimal mediation coincide. 

1 When b > 8 , they show that negotiation cannot attain the optimal 
mediation solution. 

1 A characterization of the optimal negotiation payoff when b > 8 
remains unknown, as well as whether there is any non-babbling 
equilibrium when b > √ 1 (to my knowledge). 

8 
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More References 

Corrao Dai 2023 study mediation in general cheap talk games with 
state-independent sender preferences. 

I Corrao 2023 studies mediation with transfers. 

Whitmeyer 2024 (and others) studies optimal mediation from the 
Receiver’s perspective. 

Ivanov 2010 studies information control: optimal choice of 
Sender’s info structure prior to cheap talk. 

Kolotilin Li Li 2013 study limited principal authority: Receiver 
cannot delegate the action to Sender, but can commit in advance 
to restrict his own action set to some A ˜ ⊂ A. 

Kolotilin Zapechelnyuk 2019 study connections between optimal 
delegation and Bayesian persuasion. 
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