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Topics in Repeated Games 
Last 3 lectures: foundational papers on repeated games with 
imperfect public monitoring by APS and FLM. 

Today: quick tour of three major further topics in repeated games. 

I Monitoring vs. discounting: folk theorem says we get 
cooperation when δ → 1 for fixed monitoring and stage game, 
but what can be said about how discounting, monitoring, and 
the stage game jointly determine prospects for cooperation? 

I Private monitoring: how does private monitoring make 
cooperation harder and what can be done about it? Can 
private monitoring ever make cooperation easier? 

I Community enforcement: can a group support cooperation 
when people play with different partners each period? How 
does this relate to standard repeated games with fixed 
partners? 

Cover some theorems but mostly big-picture guide to the literature. 2



Monitoring vs. Discounting: Examples 

Frequent actions. (Abreu Milgrom Pearce 1991; Fudenberg 
Levine 2007; Sannikov Skrzypacz 2007) 

I Suppose actions affect an underlying continuous-time signal 
process, and period length Δ measures how frequently players 
observe the process and potentially change actions. 

I E.g., sales are essentially continuous, but management 
observes them and adjusts strategy every Δ days. 

I Then Δ → 0 implies little discounting between updates, but 
also little information. 

I Sannikov (2007) develops a continuous-time repeated game 
model where actions determine the drift of a publicly observed 
Brownian motion. Can interpret as a natural limiting case as 
Δ → 0. Characterizes boundary of PPE payoff set as solution 
to an ODE. 
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Monitoring vs. Discounting: Examples (cntd.) 

Large populations. (Fudenberg Levine Pesendorfer 1998; 
al-Najjar Smorodinsky 2000; Sugaya Wolitzky 2024) 

I Suppose players are patient (δ → 1) but there are many of 
them ((1 − δ) N 9 0), and they are monitored through some 
“aggregate signal.” 

I What properties of the monitoring structure determine the 
prospects for cooperation in this case? 

4



Monitoring vs. Discounting: General Tradeoff 

Sugaya Wolitzky 2023 derive general results on the tradeoff 
between monitoring and discounting of the following form: there is 
a measure of monitoring precision χ2 such that if χ2/ (1 − δ) is 
small then cooperation is impossible (play is “ε-myopic”), and if 
χ2 / (1 − δ) is large then cooperation is possible (a folk theorem 
holds). 

I Impossibility result holds for public or private monitoring; folk 
theorem is proved for public monitoring (as we’ll see, proving 
folk theorems with private monitoring is hard). 

I The boundary case where χ2 → 0 and δ → 1 at the same rate 
is the frequent action limit. In this case, typically partial 
cooperation is possible, e.g. as characterized in the 
“continuous-time limit” by Sannikov. 

We cover the impossibility result (more novel); skip the folk 
theorem (builds on FLM). 
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The Blind Game 

First observation: by a “revelation principle,” for any monitoring 
structure (Y , p), the set of NE outcomes is smaller than that in 
the following blind game. 

I There is a mediator. At the beginning of the each period, 
mediator privately recommends an action to each player. 

I At end of each period, players observe nothing (except own 
action); mediation observes y (drawn with prob p (y |a)). 

I Mediator does not observe a. 

I Player i’s period-t action can depend on � � 
t−1 (ai ,t 0 , ri ,t 0 )t 0=1 , ri ,t , where ri ,t is mediator’s period-t

0 

recommendation to player i . 

Intuition: blind game has same “amount of information” as the 
original game, but the information is optimally distributed. 
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Outcomes and Occupation Measures � ∞� 
An outcome of the repeated game µ ∈ Δ (A × Y ) is a 
distribution over infinite paths of action profiles and signals. 

I A strategy profile induces a unique outcome. 

The outcome determines the ex ante marginal distribution over 
µ period-t action profiles, α ∈ Δ (A). t 

The occupation measure over actions induced by µ, 
αµ ∈ Δ (A), is the expected discounted fraction of periods each 
action profile is played: 

∞ 

αµ δt 
µ 

= (1 − δ) ∑ αt . 
t=1 

Note: occupation measure determines payoffs. 

I Expected payoff vector under outcome µ is u (αµ). 
I αµ is how the game is played “on average.” 7



Manipulations 

In a mediated game, a 1-shot deviation is a manipulation 
si : Ai → Δ (Ai ). 

I When recommended ai , play si (ai ) instead. 

The gain from manipulation si at action profile distribution 
α ∈ Δ (A) is 

gi (si , α) = ∑ α (s) (ui (si (ai ) , a−i ) − ui (a)) . 
a∈A 

For any ε > 0, an action profile distribution α ∈ Δ (A) is a static 
ε-correlated equilibrium if gi (si , α) ≤ ε for all i and si . 
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Detectability 
The detectability of manipulation si at action profile a is � 

p (y |si (ai ) , a−i ) − p (y |a) 
�2 

χ2 i (si , a) = ∑ p (y |a) . 
p (y |a) y 

I χ2-divergence of p (·|si (ai ) , a−i ) from p (y |a). 
I Well-defined if signals have full support (assume this). 
I Extend linearly to χ2 i (si , α) for α ∈ Δ (A). 

Intuition: 

I Likelihood ratio difference is key info measure for incentives 
(Mirrlees 1975, Holmstrom 1979). 

I Expected likelihood ratio difference is always 0. 
I Likelihood ratio difference is “often large” iff its variance is 
large. 

I χ2-divergence is the variance of the likelihood ratio difference. 9



Why is \chi^2-Divergence the “Right Measure”? 
Punishment for deviating=change in E[continuation payoff]: 

∑ (p (y |si (ai ) , a−i ) − p (y |a)) wi (y ) 
y � � 

p (y |si (ai ) , a−i ) − p (y |a) 
= ∑ p (y |a) (wi (y ) − E [wi (y )]) . p (y |a) y 

By Cauchy-Schwarz for the inner product 
hX , Y i = ∑y p (y |a) X (y ) Y (y ), an upper bound on the 
punishment is q

χ2 i (si , a) Var (wi (y )). 

To deter deviations, χ2-divergence and continuation payoff 
variance must both be large. 

Bound is tight when likelihood ratio differences and continuation 
payoff differences are co-linear. 
I Can show this is optimal for minimizing continuation payoff 
variance under incentive constraints. 10



Theorem: Mnemonic 

Theorem 
For any NE in any repeated game, r 

δ 
deviation gain ≤ (detectability)(on-path payoff variance). 

1 − δ 
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Theorem: Formal 

Theorem 
For any NE in any repeated game (as well as in the corresponding 
blind game), any player i , and any manipulation si , we have r 

δ
χ2 gi (si , αµ) ≤ i (si , α

µ) Vi (αµ). 
1 − δ 

In particular, αµ is a static ε-correlated equilibrium (and hence 
repeated game payoffs under µ are static ε-correlated eqm payoffs), 
for r 

δ
χ2 ε = max i (si , α

µ) Vi (αµ). 
i ,si 1 − δ 
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Remarks 

r 
δ 

ε = max χi 
2 (si , αµ) Vi (αµ). 

i ,si 1 − δ 

I Incentives bounded by square root of product of patience, 
detectability, and on-path payoff variance. 

I FLM folk theorem limit: small detectability OK when δ → 1. 
I Perfect monitoring limit: on-path variance → 0 OK when 
detectability → ∞. 

I “Surprising” that (1 − δ)−1 goes inside square root, as 
continuation payoffs get weight (1 − δ)−1 relative to 
stage-game payoffs. 

I However, impossible for all entire continuation payoff to 
depend fully on each current period signal. 
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I Longest possible review is T ≈
�
(1− δ)−1

�
. With this review

length, present value of rewards/punishments is independent
of δ.

I Standard deviation of signal counts is at least (1− δ)−1/2.
I Probability that a 1-shot deviation is pivotal is at most
(1− δ)1/2.

I Hence, average incentive strength is at most (1− δ)1/2.
I Average static deviation gain is at least (1− δ) gi (si , αµ).
I So, (average deviation gain)<(average incentive strength)
implies gi (si , αµ) < (1− δ)−1/2.

Intuition for 1-\delta Order 
Why is (1 − δ)−1/2 the right order? 

I Consider “review strategy” that aggregates information for T 
periods before deciding on reward/punishment. 

I Not exactly optimal but suffi ces for folk theorem: Radner 1985. 
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Intuition for 1-\delta Order 
Why is (1 − δ)−1/2 the right order? 

I Consider “review strategy” that aggregates information for T 
periods before deciding on reward/punishment. 

I Not exactly optimal but suffi ces for folk theorem: Radner 1985. � � 
I Longest possible review is T ≈ (1 − δ)−1 . With this review 

length, present value of rewards/punishments is independent 
of δ. 

−1/2 I Standard deviation of signal counts is at least (1 − δ) . 
I Probability that a 1-shot deviation is pivotal is at most 

1/2 (1 − δ) . 
1/2 I Hence, average incentive strength is at most (1 − δ) . 

I Average static deviation gain is at least (1 − δ) gi (si , αµ). 
I So, (average deviation gain)<(average incentive strength) 

−1/2 implies gi (si , αµ) < (1 − δ) . 
15



Proof Idea 
Based on variance decomposition: to provide incentives, 
continuation payoffs must vary with signals, and due to 
discounting this variation must be delivered relatively quickkly. 

Variance decomposition gives a recursive bound, even though 
equilibria are not recursive. 

3 steps: 

1. If not profitable to manipulate in period t, conditional 
variance of period t + 1 continuation payoff must be high 
compared to ratio of period-t deviation gain and detectability 
(IC+Cauchy-Schwarz). 

2. Use law of total variance to apply this lower bound recursively, 
show discounted sum of payoff variances exceeds a discounted 
sum of bounds ((1 − δ) ×ratio of deviation gain and 
detectability). 

3. Use Jensen to convert discounted sum of inequalities to an 
inequality for the occupation measure, take square root. 16



Repeated Games with Private Monitoring 
In many repeated games, signals are privately observed. 

I Stigler 1964: firms choose prices and observe own sales, which 
depend on all prices + random demand shock. 

I Levin 2003, Fuchs 2007: repeated principal-agent relationships 
where the agent’s production is assessed subjectively by the 
principal. 

I “Community enforcement”: players interact with different 
partners each period, only observe outcomes of own 
relationships. 

I Special observation structure leads to distinct analysis. 

Even with public monitoring, the recursive structure exploited by 
APS+FLM depends on restricting attention to PPE. 

I If consider all sequential equilibria with public 
monitoring– where players can accumulate relevant private 
information as a result of mixing– the situation is similar to 
that with private monitoring. 17



Private Monitoring: Preview 
Key diffi culty with private monitoring: there is no large class of 
equilibria with a recursive structure, like PPE. 

Given this, the literature takes different approaches: 

1. Analyze equilibria without a recursive structure, keeping track 
of different players’beliefs. (“Belief-based approach.”) 

2. Focus on the (fairly small) class of equilibria where players’ 
beliefs don’t matter, which recovers a recursive structure. 
(“Belief-free approach.”) 

3. Consider games with private signals but public 
communication, which allows an analysis similar to PPE 
(Compte 1996, Kandori Matsushima 1998), 

4. Consider games with “almost public” monitoring, which also 
allows an analysis similar to PPE (Mailath Morris 2002, 2008), 

We give a quick overview of these approaches. 18



Example 
Many ideas can be given in the context of a simple 2-period 
example (MS Ch. 12): 

Period 1 stage game is the partnership game/prisoner’s dilemma 
(PD): 

C D 
C 2, 2 −1, 3 
D 3, −1 0, 0 

Period 2 stage game is a coordination game: 

G B 
G 3, 3 0, 0 
B 0, 0 1, 1 

Point: period 2 is short-hand for the continuation game, where the 
players can coordinate on good or bad continuations (or might 
mis-coordinate). 19



Perfect/Public/Almost-Public Monitoring 
With perfect monitoring, “grim trigger” (C , then G if CC ) is a 
SPE. 

With a public, almost-perfect signal, it’s a PPE. 

By continuity, with an almost-public (highly correlated), 
almost-perfect signal, it’s a sequential eqm for each player to take 
C , then G if own signal is CC . 

I Since signals are highly correlated, when own signal is CC , w/ 
high prob opponent’s signal is also CC , so optimal to take G . 

I Mailath-Morris 02, 06 study repeated games with 
almost-public monitoring, showing (roughly) that strict PPE 
with bounded recall are robust to almost-public monitoring. 

I Strictness implies remains best response after slightly 
perturbing beliefs. Bounded recall implies slightly perturbing 
monitoring perturbs beliefs only slightly. 
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Conditionally Independent Monitoring 

Almost-public monitoring is important for understanding 
robustness of public monitoring results to introducing a small 
chance players get different signals. But it’s very special. 

Consider instead the opposite extreme of conditionally 
independent monitoring: p ((y1, . . . , yN ) |a) = ∏N

i =1 pi (yi |a). � 
p if a = CC I E.g., pi (yi = y ¯ |a) = independent across i 
q otherwise 

21



Conditionally Independent Monitoring (cntd.) 

Theorem 
With conditionally independent monitoring, for any 
0 ≤ q ≤ p < 1, in any strict NE, the players take DD in period 1. 

I If q = 0 and p = 1, grim trigger is clearly a strict NE. So, a 
discontinuity at p = 1. 

I If q = 0 and p ≈ 1, grim trigger is a strict NE if y1 and y2 are 
highly correlated. So, a stark difference between almost-public 
and conditionally independent. 

22



Proof 

Let a1 denote the pure period 1 action profile. 

By conditional independence, Pr (y−i = y ¯ |a, yi ) = Pr (y−i = y ¯ |a) 
for all yi . 

So Pr (a−i ,2 = G |a, yi ) is independent of yi . 

So, by strictness, ai ,2 is independent of yi . 

I Intuitively, if i sees y , attributes this to observation noise and 
ignores it. 

I Observation noise can be very unlikely, but a deviation by −i 
is prob 0! 

But then −i takes a myopic best reply in period 1. 
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A Generalization (Matsushima 91) 
Say that σi satisfies independence of irrelevant information 
(III) if, whenever two period t histories hi

t , h̃t satisfy i � � � � 
ht ht ht Pr −i |ht = Pr for all ht −i | ˜ −i , i i 

the continuation strategies following ht and h̃t are identical: i i 
σi |ht = σi | ˜ . ht i i 

Theorem 
Assume that the stage game has a unique NE, which is in pure 
strategies, and the monitoring structure satisfies conditional 
independence and full support. Then the unique repeated game 
NE such that strategies are pure and satisfy III is the infinite 
repetition of the static NE. 

I Proof is the same as in the 2-period example: argue by 
induction starting from period 1, and note that where we 
appealed to strictness, really just used III. 24



Escape Routes 
There are two escape routes from Matsushima’s impossibility 
result. 

1. Relax pure strategies (and/or conditional independence). 
I If player 1 mixes between C and D in period 1 and is more 
likely to play G following C and B following D, then 
observing y is informative for player 2, so player 2 may 
respond with G following y ¯ and B following y . 

I Typically, each player must mix to justify the other’s mixing. 
I Such equilibria can be constructed, and under some conditions 
they can support cooperation in the repeated PD. However, 
the constructions are delicate and diffi cult to generalize. This 
route is the belief-based approach to private monitoring. 

I If signals are correlated then they are informative even under 
pure strategies. Equilibria that rely on this correlation also fall 
under the belief-based approach. 

I Key papers include Sekiguchi 1997, Bhaskar Obara 2002. 25



Escape Routes (cntd.) 
2. Relax III. 

I Consider repeated PD with conditionally independent 
monitoring and suppose each player is more likely to take C 
today after a good signal of the opponent’s last-period action, 
with probs s.t. opponent is alway indifferent between C and 
D. (Such probs exist in the PD.) 

I This violates III, e.g. because in period 2 a player behaves 
differently after good and bad period 1 signals, even though 
these signals carry no information about the opponent’s 
period 1 behavior (C ) or signal (indep of own signal). 

I This is an example of a belief-free equilibrium: both C and 
D are optimal regardless of the opponent’s history, so a 
player’s belief about the opponent’s history is irrelevant. 

I The belief-free approach is usually more tractable than the 
belief-based approach. It has been applied/extended to prove 
the folk theorem for very general private monitoring structures. 
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Escape Routes (cntd.) 

I Key papers on cooperation/folk theorem with belief-free and 
related methods: Piccione 2002, Ely Valimaki 2002, 
Matsushima 2004, Ely Horner Olszewski 2006, Horner 
Olszewski 2006, Sugaya 2022. 

I However, the robustness/realism of belief-free strategies is 
debatable, because they violate III. 

I For example, suppose players get small iid taste shocks each 
period. Then shouldn’t the taste shocks determine which 
action they take when otherwise indifferent, rather than 
irrelevant past information? 

I Formally, belief-free equilibria may not be purifiable. 
This is a subtle issue, not fully understood. 
See, e.g., Bhaskar Mailath Morris 2008. 
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Belief-Free Equilibria in the PD 
Consider the PD: 

C D 
C 1, 1 −l , 1 + g 
D 1 + g , −l 0, 0 

Assume “ε-perfect conditionally independent monitoring”: � 
yi ∈ y , y ¯ with � 

1 − ε if a−i = C 
pi ( y ¯ |a) = . 

ε if a−i = D 

We’ll see how to use belief-free equilibria (BFE) to support CC . 

Plan: Start by considering perfect monitoring. 
I We’ll construct an eqm where (i) players are always indifferent 
between C and D, and (ii) C is always played on-path. 

I When perturb to almost-perfect monitoring, players remain 
indifferent between C and D, and C is almost always played 
on path. 28



,

Perfect Monitoring 

Let each player have 2 states: Good and Bad. 

I In Good, play C . If see ȳ , stay in Good. If see y , go to Bad 
with prob p (to be determined). 

I In Bad, play D. If see y , stay in Bad. If see ȳ , go to Good 
with prob q (to be determined). 

Let VG , VB be a player’s value when the opponent’s state is 
Good,Bad. With perfect monitoring, for players to be indifferent 
between C , D in both states, we must have � � 
VG = (1 − δ) (1) + δVG = (1 − δ) (1 + g ) + δ pV B + (1 − p) VG � � 
VB = (1 − δ) (0) + δVB = (1 − δ) (−l) + δ qV G + (1 − q) VB . 
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Perfect Monitoring (cntd.) 

Solving for VG , VB , p, q gives 

1 − δ 1 − δ 
VG = 1, VB = 0, p = g , r = l . 

δ δ n o 
g l I This is a valid solution if δ ≥ max , . 1+g 1+l 

I In this case, for any pair (v1, v2 ) ∈ [0, 1] × [0, 1], we can 
obtain a SPE with payoffs expected payoffs (v1, v2) by 
specifying that at the beginning of the game player 2 
randomizes between starting in Good (w/ prob v1) and Bad 
(w/ prob 1 − v1), and player 1 randomizes between starting in 
Good (w/ prob v2) and Bad (w/ prob 1 − v2). 
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Amost-Perfect Monitoring 
Now consider the same system of equations for VG , VB , p, q, but 
with almost-perfect monitoring. 

The system has a unique solution with perfect monitoring and is 
linear in the probabilities, so it also has a unique solution for any 
nearby imperfect monitoring structure. 

Moreover, as monitoring imperfections vanish, the solution 
converges to that with perfect monitoring, so VG → 1 and 
VB → 0. 

This implies that, for any pair (v1, v2) ∈ (0, 1) × (0, 1), there 
exists a sequential eqm yielding these payoffs under any ε-perfect 
monitoring structure. 
I Formally, ε-perfect monitoring means that for each i there is a 
partition of Yi into {Yi (a)}a∈A s.t., for all a ∈ A, 

∑ pi (yi |a) > 1 − ε. 
yi ∈Yi (a) 31



“Standard Repeated Games” vs. “Community 
Enforcement” 

Standard repeated games assume a fixed finite set of players, a 
well-defined start date, a common notion of calendar time since 
the start date, and monitoring that satisfies full support and 
identifiability conditions. 

I Good model for interactions with small number of 
sophisticated players and well-defined start date. 

I Small cartel that forms+enforces collusive agreement. 
Long-term partnership or principal-agent relationship. 

32



“Community Enforcement” 
In contrast, conventions governing risk-sharing, exchange, resource 
management, public goods provision often cover larger groups, 
individuals may enter and exit over time, may not be a well-defined 
start date, monitoring may be “decentralized” or “network-like.” 

The branch of repeated games geared toward this type of setting is 
called community enforcement. 
I Formally, special classes of repeated games with imperfect 
(often private) monitoring. 

I New theory issues raised by “decentralized” monitoring or 
interaction, like random matching or network structure. 

I Connects to different areas of economics like political 
economy, organizations, networks. 

There are several classes of community enforcement models. 
I Today: repeated games with uniform random matching. 
I See survey article “Cooperation in Large Societies” on my 
webpage for a survey. 33



Repeated Games with Random Matching 

I Each period, population of N players (even) breaks into pairs 
uniformly at random to play a 2-player stage game. 

I Each player perfectly observes their partner’s action at the 
end of each period, but learns nothing about actions taken in 
other matches. 

I Monitoring where each action is observed either perfectly or 
not at all are called “partial,” “semi-standard,” or “network.” 

I Intuitively, “opposite” of imperfect public monitoring. 

The model comes in two flavors: 

I Anonymous: do not observe partner’s identity before taking 
action. 

I Non-anonymous: do observe partner’s identity before taking 
action. 

34



Repeated PD with Anonymous Random Matching 
A canonical model of community enforcement is the repeated PD 
with anonymous random matching. 
I Studied in important papers by Kandori 1992, Ellison 1994. 

Ultra-low information benchmark model: in reality people usually 
know something about who they’re playing with and what that 
person’s history looks like. 
I What’s interesting is that cooperation can be possible despite 
ultra-low information. 

I Intuition: can’t identify deviator, but can provide incentives 
via collective punishment: punish everyone following any 
defection. 

Stage game: with g , l > 0, 

C D 
C 1, 1 −l , 1 + g 
D 1 + g , −l 0, 0 

35



Cooperation in Nash Eqm (Kandori 1992) 

Theorem 
In the repeated PD with anonymous random matching, there exists 
¯ δ < 1 such that, for every δ > δ̄ , there is a NE where all players 
take C in every period along the eqm path. 

I Consider contagion strategies (=grim trigger): take C until 
you see anyone take D, then switch to D forever. 

I For fixed N, once contagion starts, it spreads throughout the 
population in finite time with high probability. 

I So, for high enough δ, deviating to D at a history when you’ve 
only seen C – which starts contagion– is unprofitable. 

I These are the only on-path histories, so contagion strategies 
give a NE. 

36



Remarks 
Contagion “punishes everyone” following any deviation, so don’t 
need to identify initial deviator. 

In large populations, the order of limits between N and δ matters. 
If fix δ and take N → ∞, the eqm breaks down because the prob 
that your action starts affecting your future partners’actions 
toward you in a relevant timescale goes to 0. 

However, since contagion spreads (almost) exponentially, the eqm 
holds up for quite large populations: if vary δ and N together, 
contagion strategies give a NE whenever (1 − δ) log N → 0. 

But a problem is that contagion strategies do not give a 
sequential eqm: a patient player who observes D in period 1 may 
want to deviate to C for several periods to slow down the spread of 
contagion. The punishment for taking D is too harsh, so people 
won’t take it even when prescribed. However, this can be 
overcome by moderating the punishment. . . 37



Cooperation in Sequential Eqm (Ellison 1994) 
Theorem 
In the repeated PD with anonymous random matching, there exists 
¯ δ < 1 such that, for every δ > δ̄ , there is a sequential eqm where 
all players take C in every period along the eqm path. 

I Suppose we lessen the severity of contagion so that a player 
becomes exactly indifferent between C and D in period 1. 

I Can do this by using public randomization (if available) to 
periodically restart cooperation, or by using 
threading/Ellison trick to reduce effective δ. 

I Key observation: if a player is indifferent between C and D 
when everyone else is taking C , strictly prefers D once 
someone else is taking D. 

I Benefit of taking C is it prevents others from switching to D. 
If others have already switched, benefit is lower. 

I So, “forgiving contagion strategies” are a SE. 

Theorem shows that anonymity alone doesn’t preclude 
cooperation. But we’ll see some qualifications shortly. . . 38



Contagion Beyond the PD 

Contagion strategies do not immediately generalize beyond the 
PD: players won’t switch to a non-dominant “punishing action” if 
they believe that the rest of the population has not yet switched. 

I Nash reversion via contagion strategies only works when the 
Nash reversion action is dominant in the stage game. 

Deb González-Díaz 2019 extend contagion strategies to a larger 
class of games by having players switch to the punishment phase 
only after some delay, which is coordinated based on calendar time. 

I Significantly more complicated construction, but shows that 
at least some of the spirit of contagion strategies extends 
beyond the PD. 
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Individualized Incentives Under Anonymity 
Contagion strategies are simple, but they’re not the only way to 
provide incentives, even under anonymity. 
I Suppose player 1 is supposed to take D for T consecutive 
periods, while everyone else is supposed to take C . 

I If a second player deviates to taking D during this T period 
block, the deviation is statistically detectable by the other 
players, and so can be punished. 

Deb Sugaya Wolitzky 2020 use such asymmetric behavior, together 
with “block belief-free” ideas following Hörner Olszewski 2006 and 
Sugaya 2022, to prove the full folk theorem for repeated games 
with anonymous random matching. 
I Result allows both general stage games (beyond PD) and 
asymmetric target payoffs (e.g., player 1 gets to take D while 
others take C ). 

I However, strategies are more complex and less interpretable 
than contagion strategies. Also, unlike contagion strategies 
the proof requires extremely high δ. 40



Robustness? 

At first glance contagion strategies seem very fragile: one mistaken 
D eventually takes over the whole population. 

However, Ellison’s forgiving contagion strategies have the extra 
benefit of being more robust. Considering introducing “ε noise”: 
an ε chance that a player is constrained to take D, iid across 
players and periods. Ellison proves: 

Theorem 
There exists δ ¯ such that, for every δ > δ̄ , there is a strategy profile 
s ∗ (δ) s.t. 

1. There exists ε ¯ > 0 such that, for every ε < ε̄, the strategy 
“‘follow s∗ (δ) unless hit by the ε noise” (denoted s∗ (δ, ε)) is 
a sequential eqm of the game with ε noise. 

2. limε→0 limδ→1 u (s ∗ (δ, ε)) = 1. 

41



Proof 

I Use a slightly harsher punishment than in the ε = 0 case, so 
for small ε > 0 C remains optimal when everyone else is 
taking C , D remains optimal when someone else is taking D. 

I A subtlety: after 1000 periods of seeing C with no reset, do 
you start worrying that contagion has started but you just 
haven’t noticed it yet? 
Turns out not: time passing is bad news, but seeing C ’s is 
good news, and your belief Pr (contagion has started) in the 
limits after observing many C ’s turns out to be continuous in 
ε. 

I Effi ciency in the iterated limit δ → 1 then ε → 0 is easy: 
E [length of punishment phase] that maintains indifference is 
bounded independent of δ, so as ε → 0 the prob that 
contagion gets triggered before each reset goes to 0. 
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Remarks on Robustness 

However, this robustness result has some limitations. 

1. Large populations: Community enforcement is motivated by 
large populations. We saw that contagion strategies remain a NE 
(and forgiving contagion strategies remain a SE) if 
(1 − δ) log N → 0, which is good. But the robustness result only 
applies if we fix N and then take ε → 0. It doesn’t apply if we fix 
the expected number of errors in the population Nε, much less if 
we fix ε and take N → ∞. 

2. Commitment types: Robustness result concerns iid noise. 
Also realistic to think that large populations may contain some 
“bad types” who always take D. This turns out to be a problem 
not just for contagion strategies, but for any strategies under 
anonymity, and even to some extent under non-anonymity. 

I Studied in Sugaya Wolitzky 2020, 2021. 
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Robust Community Enforcement in Large Populations 

For these reasons, cooperation with completely anonymous players 
is not really realistic in a very large population. 

In reality, we often do cooperate with rematching in 
large-population settings, but crucially we are not completely 
anonymous. 

I E.g., cooperation in online platform markets like Uber or 
AirBnB. 

Thus, another important strand of the community enforcement 
literature studies cooperation in a continuum population where 
players carry some kind of record of their past behavior. 

I E.g., Okuno-Fujiwara Postlewaite 1995, Takahashi 2010, 
Heller Mohlin 2018, Clark Fudenberg Wolitzky 2021. 
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