Learning in Games 1: Evolutionary Game Theory

> 14.126 Game Theory Muhamet Yildiz

Road Map

- 1. Evolutionarily stable strategies
- 2. Replicator dynamics

Notation

G = (S,A) a symmetric, 2-player game where
S is the strategy space;

 $-A_{i,j} = u_1(s_i, s_j) = u_2(s_j, s_i).$

• *x*,*y* are mixed strategies;

•
$$u(x,y) = x^{T}Ay; u(s,y)$$

- ax + (1-a)y.
- u(ax+(1-a)y,z) = au(x,z) + (1-a)u(y,z)
- u(x,ay+(1-a)z) = au(x,y) + (1-a)u(x,z)

Alternative Definition

Fact: *x* is evolutionarily stable iff $\forall y \neq x$,

1. $u(x,x) \ge u(y,x)$, and 2. $u(x,x) = u(y,x) \Longrightarrow u(x,y) > u(y,y)$. <u>Proof:</u> Define $F(\varepsilon,y) = u(x,(1-\varepsilon)x+\varepsilon y) - u(y,(1-\varepsilon)x+\varepsilon y)$ $= u(x-y,x+\varepsilon(y-x))$ $= u(x-y,x) + \varepsilon u(x-y,y-x)$.

Replicator Dynamics

Examples

- Replicator dynamics in prisoners' dilemma
- Replicator dynamics in chicken
- Replicator dynamics in the battle of the sexes.

Rationalizability

$$\frac{d}{dt} \left[\frac{x_i}{x_j} \right] = \left[u(s_i, x) - u(s_j, x) \right] \frac{x_i}{x_j}$$

• $\xi(.,x_0)$ is the solution to replicator dynamics starting at x_0 .

Theorem: If a pure strategy *i* is strictly dominated (by *y*), then $\lim_{t} \xi_i(t, x_0) = 0$ for any interior x_0 .

Proof: Define $v_i(x) = \log(x_i) - \sum_j y_j \log(x_j)$. Then,

$$\frac{dv_i(x(t))}{dt} = \frac{\dot{x}_i}{x_i} - \sum_j y_j \frac{\dot{x}_j}{x_j} = u(s_i - x, x) - \sum_j y_j u(s_j - x, x) = u(s_i - y, x).$$

Hence, $v_i(x(t)) \to -\infty$, i.e., $x_i(t) \to 0$.

Theorem: If *i* is not rationalizable, then $\lim_{t} \xi_i(t, x_0) = 0$ for any interior x_0 .

Theorems

Theorem: Every ESS *x* is an asymptotically stable steady state of replicator dynamics.(If the individuals can inherit the mixed strategies, the converse is also true.)

Theorem: If x is an asymptotically stable steady state of replicator dynamics, then (x,x) is a perfect Nash equilibrium.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

14.126 Game Theory Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.