MIT OpenCourseWare <u>http://ocw.mit.edu</u>

15.023J / 12.848J / ESD.128J Global Climate Change: Economics, Science, and Policy Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# **Climate Policy Analysis**

- What long-term stabilization target?
- How strong a mitigation effort to undertake NOW?
  - Quantity target, say for 2008-2015?
  - Social cost of carbon?
- Need more information?
  - What specifically?
  - How to frame the issue for public/policy discussion?

# Path for Today

- Structure of the assessment task
  - The handling of uncertainty
  - Representation of decision-making process
  - Areas of policy choice
- Examples under Certainty
  - Benefit-cost analysis
  - Cost-effectiveness analysis
  - Tolerable windows analysis
- Examples under Uncertainty (preview)
  - Probabilistic forecasts
  - Sequential decision

# Certainty vs. Uncertainty

- Assuming certainty
  - Once-and-for-all decision now
    - Near-term choice (*e.g.*, Kyoto-type analyses)
    - Path over time (*e.g.*, B/C, stabilization studies)
- Considering uncertainty
  - Once-and-for-all decision now
    - Scenario analysis
    - With probability distributions
  - Sequential choice, with learning

How important to include uncertainty?

Representation of the Decision-Maker or Process

• Single decision-maker

 Multiple decision-makers and gaming behavior

Negotiation among parties

What is the value/limits of single-actor analysis?

# **Areas of Policy Choice**

- Emissions control (what to do now?)
  - Single decision-maker (global welfare)
  - [Multiple parties and negotiation]
- Anticipatory adaptation
- Actions to open options
  - R&D & technology push
  - "Architecture" of climate negotiations
- Geo-engineering



## **Benefit-Cost Analysis**

- Cost function & benefit relationship
- Alternative applications
  - Calculate optimal path, unconstrained
  - Constrain by long-term target
  - Apply policy scenarios (e.g., burden sharing)
- Difficult issues
  - Valuation & aggregation
  - Discounting
  - Institutional assumptions

# Example: Nordhaus DICE Model

- Growth, emissions, and  $\Delta T$ – Like Homework's 2 & 3
- Climate change effects

   A damage function of form in last lecture
- Forward-looking, optimizing model
- Policy assumptions
  - Optimal path (by their valuations)
  - Stabilize concentrations at 2xCO<sub>2</sub>
  - Hold  $\Delta T$  to 2.5°C
  - Stabilize emissions at 1990 levels (E90)

#### **Efficient Policies**



Figure by MIT OpenCourseWare.

#### Social Cost of Carbon



Figure by MIT OpenCourseWare.

# Insights/Evaluation?

- What think of the analysis?
- Insights gained?
  - About paths of stringency?
  - Other?
- What assumptions dominate?

- What is missing?
- US EPA task under Court ruling on CO<sub>2</sub>
- Debates surrounding Warner-Lieberman

# **Cost Effectiveness Analysis** What control to take today? Who does what? B/C

Climate target (Article 2)

(?)







#### **Stabilization**

- Forcing trajectories are similar across the models
- 550 and 650 ppmv cases
   stabilize in next century
- 450 case must stabilize with 50 t0 75 years







#### **Required CO<sub>2</sub> Reduction**

To stabilize, emissions must decline to the rate of natural removal  $(E \rightarrow 0)$ Higher stabilization targets only delay this ultimate condition Monotonic increase in effort over time, with only technology to moderate



Year

#### % Loss in Global World Product 550 ppmv case (MER)



#### **Origin of the Differences**

- Required CO<sub>2</sub> reduction
- Assumptions about post-2050 technology

### **Cost-Effectiveness Analysis**

- Maybe no direct benefit estimate

   Least-cost path in stabilization studies
   Examples: CCSP & HW #3
- Explore what, where & when flexibility
- Input to "meta" benefit-cost analysis
  - Combine with benefits of stabilization level
  - Example: Stern Review
- Difficult issues
  - Aggregation
  - Discounting
  - Institutional assumptions

#### **Tolerable Windows**



Who does what?

B/C

(?)





## **Tolerable Windows**

- No explicit benefit function
  - Represented in form of constraints
- No explicit cost function
  - Represented by some limit on effort
- Question: what must we do to preserve the option of some future climate state?
  - Capable of multiple attributes

### **Sequence of Windows**



Figure by MIT OpenCourseWare.



National Assessment Synthesis Team, Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change (Washington, DC: U.S. Global Change Research Program, 2000). Courtesy of The U.S. Global Change Research Program (USGCRP). Used with permission.







Figure by MIT OpenCourseWare.

## Insights/Evaluation?

- What think of the analysis?
- Insights gained?

- What assumptions dominate?
  - Structure of solution algorithm
- What is missing?



What control action today?



Climate target (Article 2) What would we gain with stabilization & 550 ppm?





# Benefit-Cost Under Uncertainty

# What control action today?

B/C

#### Climate target (Article 2)

The "Wait to Learn" Debate April 23 & 28

# **Ongoing Research**

- Upper tail the distribution of outcomes

   Missing (extreme) events
- Methodology
  - Elicitation of parameter PDFs
  - Cascading uncertainties through models of several stages of the climate issue
- The real (sequential) decision problem
   Partial learning
  - Partial learning
  - Institutions and path dependency
  - Capturing risk aversion (precaution)
  - Multiple players & "who does what?"
- Lay communication

# **Final Thoughts**

- At best, gain rough insight to today's decision
  - Damage functions are inadequate to the task
  - Necessary simplification of choices
  - Thus far: single decision-maker model, or very simple decision theory representations
- Much work needed to do better, even for "expert" understanding
- Lay audiences deserve our sympathy



Courtesy of McKinsey & Company. Used with permission.

Source: McKinsey analysis

# Explaining Why Technologies Are Not Used

- Market failures: decision-makers don't see correct price signals
  - Lack of information
  - Principal-agent problems (e.g., landlordtenant)
  - Externalities & public goods
- Market barriers
  - Hidden costs (e.g., transactions costs)
  - Disadvantages perceived by users
  - "High" discount rates

## Alternative Views of the Options



Figure by MIT OpenCourseWare, adapted from Resources for the Future.

# Thinking about Technology

- What is technology, and tech. change?
- What leads to change?
  - Does change tend to economize on one factor or another, in response to prices?
  - What is the role of R&D expenditure?
  - To what degree is it ad hoc or random?
- Role of "learning by doing"
- How to distinguish tech change from ΣQ – Change in inputs (in response to price) – Economies of scale

# "New" Technologies

- Carbon capture and storage

   From electric power plants
   From the air
- Renewables
  - Wind & solar
  - Biomass
  - Tidal power
  - Geothermal

What determines the likely contribution of each?

- New generation of fission, and fusion
- Solar satellites
- Demand-side technology
  - Fuel cells and  $H_2$  fuel
  - Other? (lighting, buildings, ind. process, etc.)