MIT OpenCourseWare <u>http://ocw.mit.edu</u>

15.023J / 12.848J / ESD.128J Global Climate Change: Economics, Science, and Policy Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Economics of GHG Control

- Review of concepts, terminology, issues
- CGE models + sample applications
- Example using price only
- The use of MAC curves
- Technology costing approaches
- Issues in the handling of technology

 Endogenous change & "new" technology
 Barriers, failures and the free lunch

Cost/Welfare Concepts

- Emissions price
- Area under marginal abatement curve
- Simple macroeconomic aggregates (models with one non-energy output)
 - GDP
 - Consumption (*e.g.*, Homework #2)
- Equivalent variation (economic welfare)
 - Income compensation to restore consumers to pre-constraint level of welfare (~ consumption)

What to Include?

- What greenhouse substances?
 - $-CO_2$ only?
 - CH₄, N₂O, HFCs, PFCs & SF₆
 - Aerosol precursors (e.g., SO₂, black carbon)
 - O₃ precursors
- Carbon sinks?
- Ancillary benefits of GHG controls?
 - Urban air pollution
 - Other?

Cost to Whom?

- What unit of analysis?
 - Nation
 - Global, or Annex I vs. Non-Annex I

- Other?

- Issues of aggregation
 - Of nations
 - Of sub-national components

Approaches to the Task

CGE (EPPA): What Tradeoffs?

- Multiple objectives in design
 - Analysis of policy cost, short and long term
 - Drive the climate portion of the IGSM
- Emphasis in structure
 - Market interaction vs. focus on many specific technologies
 - Short-term detail vs. long-term economic change
 - CO₂ only or all GHGs
- Two versions based on agent expectations
 - Recursive-dynamic (the workhorse)
 - Forward-looking (some simplifications)

Factors Determining Results

Toy

← Toy

- Population growth
- Labor productivity growth
- Energy efficiency change (AEEI)
- Substitution elasticities
- Vintaging assumption
- Costs of future technologies
- Non-CO₂ gas assumptions
- Fossil energy resources

Examples of EPPA Analyses

- Short-term mitigation targets
 - Trade effects 🗧 Kyoto Protocol
 - Intensity vs. absolute targets
 - Emissions trading Cap-&-trade bills (4-2)
 - Inefficient policies
 - Multi-gas strategies *vs*. CO₂ only
- Studies of particular technologies/fuels
 - Carbon capture and storage Coal study
 - Biomass, solar and wind, nuclear

Effects Through Trade (Annex I Constrains CO₂, OPEC view)

- Penalty on CO₂ emissions in Annex I
 - Price of Annex I energy use rises
 - ↓ oil world oil demand: ↓ export volume
- Change in the "terms of trade" & view

 Prices of exports (oil, gas, coal) fall from US?
 Price of energy-intensive imports rises
- Net of all → welfare loss

Kyoto Example

Transfer of Costs to Energy Exporters

Cost of Long-Term Targets

 Total reduction required - Reference emissions growth - Carbon cycle (ocean/land uptake) The role of technological change - Ease of substitution Autonomous change - Endogenous change (policy influenced) Sources of endogenous change -AEEI, $\sigma = f(carbon price)$ - Explicit modeling of R&D, and its effects -Learning by doing: Cost = $f(\Sigma Q)$ Specification of a "backstop" technology

 \sim

% Loss in Global World Product 550 ppmv case (MER)

Origin of the Differences

- Required CO₂ reduction
- Assumptions about post-2050 • technology

Cumulative Reduction (GtC 2000- 2100)

Target (ppmv)	IGSM	MERGE	Mini-CAM
750			
650			
550			
450			

Determinants of the CO₂ Effort Required

- No-policy emissions growth, uncertain over a century
- CO₂ uptake by the oceans & terrestrial biosphere, subject to scientific uncertainty
- Potential achievements with the non-CO₂ gases

Uncertainty in Ocean Uptake

Role of Science &Technology

- Differences in technology advance late in the century make a big difference in CO₂ price & cost
- The scenarios assume CCS and bio-fuels are unrestrained, and for two models same for nuclear
- In the more stringent cases electric power is essentially de-carbonized by century's end
- Differences depend on many technologies, but end-use ones are critical, e.g.,
 - Introduction of H₂ as a carrier in transport and other uses
 - Electrification of non-transport demand

Example Using Price Only (The MIT Coal Study)

Figure by MIT OpenCourseWare.

Exajoules of Coal Use (EJ) and Global CO₂ Emissions (Gt/yr) in 2000 and 2050 with and without Carbon Capture and Storage*

Business As Usual		Limited Nuclear 2060		Expanded Nuclear 2050			
2000	2060	With CCS	Without CCS	With CCS	Without CCS		
100	448	161	116	121	78		
24	58	40	28	25	13		
27	88	39	24	31	17		
24	62	28	32	26	29		
9	32	5	9	3	6		
* Universal, simultaneous participation, High CO ₂ prices and EPPA-Ref gas prices.							
t	2000 100 24 27 24 9 icipation, Hi	2000 2060 100 448 24 58 27 88 24 62 9 32	2000 2060 With CCS 100 448 161 24 58 40 27 88 39 24 62 28 9 32 5	2000 2060 With CCS Without CCS 100 448 161 116 24 58 40 28 27 88 39 24 24 62 28 32 9 32 5 9	2000 2060 With CCS Without CCS With CCS 100 448 161 116 121 24 58 40 28 25 27 88 39 24 31 24 62 28 32 26 9 32 5 9 3		

Marginal Abatement Curve

Aggregating Gases

Shortcomings of MACs

National Academies - 1991

Comparison of mitigation options using technological costing and energy modeling calculations.

Courtesy of McKinsey & Company. Used with permission.

What is Happening to Cost?

Explaining Why Technologies Are Not Used

- Market failures: decision-makers don't see correct price signals
 - Lack of information
 - Principal-agent problems (e.g., landlordtenant)
 - Externalities & public goods
- Market barriers
 - Hidden costs (e.g., transactions costs)
 - Disadvantages perceived by users
 - "High" discount rates

Alternative Views of the Options

Figure by MIT OpenCourseWare, adapted from Resources for the Future.

Thinking about Technology

- What is technology, and tech. change?
- What leads to change?
 - Does change tend to economize on one factor or another, in response to prices?
 - What is the role of R&D expenditure?
 - To what degree is it ad hoc or random?
- Role of "learning by doing"
- How to distinguish tech change from

 Change in inputs (in response to price)
 Economies of scale

 Σ C

"New" Technologies

- Carbon capture and storage

 From electric power plants
 From the air
- Renewables
 - Wind & solar
 - Biomass
 - Tidal power
 Geothermal

What determines the likely contribution of each?

- New generation of fission, and fusion
- Solar satellites
- Demand-side technology
 - Fuel cells and H_2 fuel
 - Other? (lighting, buildings, ind. process, etc.)