MIT OpenCourseWare <u>http://ocw.mit.edu</u>

15.023J / 12.848J / ESD.128J Global Climate Change: Economics, Science, and Policy Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Growth, Technology & Emissions

- The reference or BAU projection: its uses
 - Understand the climate problem, its magnitude
 - Basis for analyzing mitigation measures
- Methods & puzzles in construction
 - "Horses for courses"
 - Underlying assumptions
- How the analysis is done
 - Simple growth models, myopic & forward-looking
 - Add an energy sector, and multiple regions
 - Multiple goods and energy types
 - Multiple regions & trade in goods & permits
- Sample results from a 3-model study

Emissions Projections (Say, CO₂ to 2020)

• For MIT

• For the USA

Market-Based vs. Technology Cost

VS.

Top-Down

- General equilibrium
 - Full economy
 - Goods, capital, labor
 - Prices endogenous
 - Factors driving growth
 - International trade
- Sacrifice technological detail
 - Production technology
 - Aggregation of sectors

Bottom-up

- Engineering cost
 - Technical detail
 - Zero-cost opportunities
- Partial equilibrium
 - Key prices exogenous
 - Omit interactions
- Direct costs, ignoring
 - Consumer surplus loss
 - Industrial structure
 - Transactions costs

Hybrids

Non-CO₂ Human Emissions

- CH₄
 - Coal, gas and oil production
 - Landfills, livestock, rice production
- N₂O

 Agricultural soils, chemical production
- Industrial gases
 - HFCs (air conditioning, foam blowing, solvents)
 - PFCs (semiconductor production, aluminum)
 - SF₆ (Insulator in electrical switchgear)
- Black carbon (aerosols)
 Diesel engines, biomass burning
- Sox (aerosol precursor) – Coal burning

Components of a Projection Model

- Represent the production process
- Drivers of growth
 - Population
 - Productivity change
 - Growth in the capital stock
- Economic decisions (e.g., savings rate, consumer choice)
- Carbon emissions
 - Energy use
 - Carbon content of energy
- Calibrate to base year data

Technology: Cutting Grass

Technology Improvement

Extended Production Function

Capital

Labor

Energy

Other Input Factors to Production: q = f(K, L, E, M, FF)Output

Technical Change:

Multi-factor Productivity: q = a(t) f(K, L, E, M)Labor Productivity: **Energy Efficiency:**

Endog. Tech. Change: $q = f(K, L, a(t, P_F)E, M)$

q = f(K, a(t)L, E, M)q = f(K, L, a(t)E, M)

Materials

Factor

Fixed

Simple "Top-Down" Model

- Simplifications
 - One output good (X)
 - One country (no trade)
 - "Parameterized" energy sector
 - No government (no taxes or transfers)
 - Recursive-dynamic (myopic): economic agents don't anticipate future prices
 - $-CO_2$ only
- Relax these as we go forward

A Recursive Dynamic Model

$$X_{t} = a_{t} (b_{K} K^{\rho^{KL}} + b_{L} L^{\rho^{KL}})^{1/\rho^{KL}}$$

 $L_t = L_0 (1 + \gamma)^t$

 $\boldsymbol{a}_t = (1+\boldsymbol{g})^t$

$$\boldsymbol{K}_{t} = (1 - \delta)\boldsymbol{K}_{t-1} + \boldsymbol{I}_{t}$$

- $X_t = C_t + S_t$
- $S_t = I_t$
- $S_t = SY_t$ ($Y \equiv X$)
- $\boldsymbol{E}_t = \boldsymbol{f}(\boldsymbol{X}_t, \boldsymbol{t})$

Labor force growth

Production function

Productivity change

Capital accumulation

Accounting Identity

Saving/investm't equilibrium

Savings behavior

Carbon emissions

A Forward-Looking Model

 $X_{t} = a_{t} (b_{\kappa} K^{\rho \kappa L} + b_{\tau} L^{\rho^{\kappa L}})^{\frac{1}{\rho^{\kappa L}}}$

 $L_t = POP_0(1+\gamma)^t$

 $\boldsymbol{a}_t = (1+\boldsymbol{g})^t$

$$\boldsymbol{K}_{t} = (1 - \delta)\boldsymbol{K}_{t-1} + \boldsymbol{I}_{t}$$

 $\boldsymbol{X}_t = \boldsymbol{C}_t + \boldsymbol{S}_t$

 $S_t = I_t$

$$Max(W) = \sum_{t} \frac{f(C_t)}{(1+r)^t}$$

 $\boldsymbol{E}_t = \boldsymbol{f}(\boldsymbol{X}_t, \boldsymbol{t})$

Production function

Labor force growth

Technical change

Capital accumulation

Accounting Identity

Saving/invest equilibrium

Maximize welfare (W)

Carbon emissions

MIT Integrated Global System Model

Transactions In a Simple Economy

EPPA: Sectoral Aggregation

Sample Production Structure

The Base-Year Data Social Accounting Matrix (SAM)

Figure by MIT OpenCourseWare.

MIT (EPPA) Model Multi-Regions and Trade

EPPA: Regional Aggregation

Annex B USA Europe Canada Mexico

> Japan Aus. & N.Z.

FSU E. Europe

For special studies: Finland France Germany **Britain** Italy Holland Spain Sweden Hungary Poland Other

Non-Annex B China India Persian Gulf Indonesia Africa Latin America East Asia **Rest of World**

Scenarios of Emissions & Concentrations The three models (U.S. CCSP pp. 47-48)

Feature	IGSM/EPPA	MERGE	MiniCAM	
Structure	General equilibrium	General equilibrium	Partial equilibrium	
Solution	Recursive dynamic	Forward looking	Recursive dynamic	
Population	Exogenous	Exogenous	Exogenous	p. 61
Labor force	Proportional to population	Proportional to population	Population demographics	
Main growth driver	Exog. Labor productivity	Exog. Labor productivity	Exog. Labor productivity	p. 64
Structure of final demand	Sectors shown earlier	Single prod'n sector (GDP)	Buildings, transport, industry	

Global Industrial CO₂ Emissions

Global Primary Energy: Reference

