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1) Hotelling’s Location Game. Recall the “beach vendors” game we discussed in class, 

with the following modification: there are two firms (i=1,2), each one chooses a 
position from the set Si= {1, 2,. . . , 10}. The consumers are equally distributed across 
these ten positions. Consumers buy from the firm whose position is closest to theirs. 
If the two firms are equidistant from a given position, half of the consumers go to 
each firm. The aim of the firms is to maximize their total sales.  
Thus, for example, firm 1’s payoff if both firms choose position 8 is u1 (8, 8) = 50. 
If instead, firm 1 chooses 7 and firm 2 chooses 8, firm 1’s payoff is u1 (7, 8) = 70.  
[Hint: you do not need to write out the full payoff matrix!] 
a) Consider the strategy of picking location 1. Find all the strategies that strictly 

dominate strategy 1. Explain your answer. [Hint: try some guesses and see if they 
work.] 

b) Suppose now that there are three firms. Thus, for example, u1(8, 8, 8) =33.3 and 
u1 (7, 9, 9) = 73.3. Is strategy 1 dominated, strictly or weakly, by strategy 2? How 
about by strategy 3? Explain.  

c) Suppose we delete strategies 1 and 10. That is, we rule out the possibility of any 
firm choosing either location 1 or 10, although there are still consumers at those 
positions. Is strategy 2 dominated, strictly or weakly, by any other strategy si in 
the reduced game? Explain. 
 
 

2) Penalty Shots Revisited. Player 1 has to take a soccer penalty shot to decide the 
game. She can shoot Left, Middle, or Right. Player 2 is the goalie. He can dive to the 
left, middle, or right. Actions are chosen simultaneously. The payoffs (which here are 
the probabilities in tenths of winning) are as follows. 

   2  
  l m r 
1 L 4,6 7,3 9,1 
 M 6,4 3,7 6,4 
 R 9,1 7,3 4,6 

 
a) For each player, is any strategy dominated by another strategy? 
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b) What probabilities (beliefs) must player 2 attach to player 1’s strategies in order 
for m to be a best response? 

c) For what beliefs about player 2’s strategy is M a best response for player 1? 
[Hint: you do not need to draw a 3-dimensional picture!]. 

d) Suppose player 2 “puts himself in player 1’s shoes” and assumes that player 1, 
whatever is her belief, will always choose a best response to that belief. Should 
player 2 ever choose m? 

e) Show that this game does not have a (pure-strategy) Nash Equilibrium. 
 
 

3) Splitting the Dollar(s). Players 1 and 2 are bargaining over how to split $10. Each 
player i names an amount, si between 0 and 10 for herself. These numbers do not 
have to be in whole dollar units. The choices are made simultaneously. Each player’s 
payoff is equal to her own money payoff. We will consider this game under two 
different rules. In both cases, if s1 +s2 ≤ 10 then the players get the amounts that they 
named (and the remainder, if any, is destroyed). 
a) In the first case, if s1 + s2 > 10 then both players get zero and the money is 

destroyed. What are the (pure strategy) Nash Equilibria of this game? 
b) In the second case, if s1 + s2 > 10 and the amounts named are different, then the 

person who names the smaller amount gets that amount and the other person gets 
the remaining money. If s1 + s2 > 10 and s1 = s2 then both players get $5 . What 
are the (pure strategy) Nash Equilibria of this game? 

a) Now suppose these two games are played with the extra rule that the named 
amounts have to be in whole dollar units. Does this change the (pure strategy) 
Nash Equilibria in either case? 
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