Game Theory

for
Strategic Advantage

15.025

Alessandro Bonatti
MIT Sloan

Overview of Foundations

Today's Class

Bargaining fundamentals

1. Players
2. Added Values
3. Procedures

- Right of first refusal
- Clauses as commitments

Iberia Deal: Background

- Iberia replacing Boeing 747s
- Airbus, Boeing offer similar planes
- Current fleet mostly Airbus
- Boeing participates \rightarrow Months-long "dogfight"
- Iberia's CFO "structured everything to maintain tension up to the last 15 minutes"

Iberia Deal: Key Elements

- Switching costs (current and prospective)
- Price competition vs. product competition
- Determinants of bargaining power
- "With 200 airlines and two plane makers, you think we'd get a little more respect."
(Airbus' Top Salesman)

Co-opetition: Games at HBS

- Professor and students play cards
- Dean puts up $\$ 2,600$ in prize money
- Free-form negotiation with one rule
- Bargain on an individual basis

The Logic of Added Value

- Cards example
- Added value = extra surplus ("pie") generated when you are in the game
- Can never obtain more than your added value
- Cities for NFL teams
- 3G licenses (after spring break)
- "Larger share of a smaller pie" = monopoly power

John Nash's Bargaining Game

- The "demands game":
- Two players split a pot worth $\$ 10$ million
- Simultaneous moves
- Each player makes a "demand"
- Compatible demands: split the difference evenly
- Incompatible demands: lose everything
- Sounds familiar?

Game-Theoretic Analysis

- Players: i and j
- Actions: $\boldsymbol{x}_{\boldsymbol{i}}=$ player i 's demand
- Payoffs: $\boldsymbol{x}_{\boldsymbol{i}}+\mathbf{0 . 5 *}\left(\mathbf{1 0}-\boldsymbol{x}_{\boldsymbol{i}}-x_{j}\right)$ if $\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{x}_{\boldsymbol{j}} \leq \mathbf{1 0}$
zero if $x_{i}+x_{j}>10$
- i 's best response: $\boldsymbol{x}_{\boldsymbol{i}}{ }^{*}\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=\mathbf{1 0 - \boldsymbol { x } _ { j }}$

Game-Theoretic Analysis

- Mutual best responses:
- $x_{i}=10-x_{j}$
- $x_{j}=10-x_{i}$
- Every exact split ($\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{x}_{\boldsymbol{j}}=\mathbf{1 0}$) is an equilibrium!
- Added values = ??
- Often select "focal point:" the equilibrium $(5,5)$

Competing Demands Game

- Three players (airbus, boeing, and iberia)
- Simultaneous moves
- Each player makes a demand $\rightarrow\left(\boldsymbol{x}_{a}, \boldsymbol{x}_{\boldsymbol{b}}, \boldsymbol{x}_{\boldsymbol{i}}\right)$
- Iberia then picks either $\boldsymbol{x}_{\boldsymbol{a}}$ or $\boldsymbol{x}_{\boldsymbol{b}}$
- Compatible demands: split the difference evenly
- Incompatible: lose everything

Game-Theoretic Analysis

- Backward induction: iberia picks $\boldsymbol{x}_{\boldsymbol{a}}$ if $\boldsymbol{x}_{\boldsymbol{a}}<\boldsymbol{x}_{\boldsymbol{b}}$
- Ties broken by coin flip
- $u_{i}=x_{i}+0.5^{*}\left(10-x_{i}-\min \left\{x_{a}, x_{b}\right\}\right) \quad$ (if sum<10)
- $u_{a}=x_{a}+0.5^{*}\left(10-x_{i}-x_{a}\right) \quad$ (if $\left.x_{a}<\min \left\{10-x_{i}, x_{b}\right\}\right)$
- Best responses:

$$
\begin{aligned}
& -x_{i}^{*}\left(x_{a}, x_{b}\right)=10-\min \left\{x_{a}, x_{b}\right\} \\
& -x_{a}^{*}\left(x_{i}, x_{b}\right)=\min \left\{10-x_{i}, x_{b}-\varepsilon\right\}
\end{aligned}
$$

- Unique Nash Equilibrium: $\left(x_{i}=10, x_{a}=x_{b}=0\right)$
- Added values??

Demands Game: Key Elements

- 2 sellers vs. 1 buyer
- More generally: relative scarcity ("short side")
- Strategic move: create scarcity!

In practice (suppose you are selling):

1. Add buyers!
2. Reduce objects!

Bringing Players In (Co-opetition, Ch.4)

- Boeing thought it was worth to play... Why?
- What if it isn't?
- Nutrasweet (Monsanto) vs. Holland Sweetener
- CSX vs. Norfolk Southern (railroads)
- Get paid to play!
- McCaw, LIN, and BellSouth (telephone licenses)
- Always ask: who stands to gain? Cicero

Alternating Offers

- New bargaining protocol
- Sequential version of the demands game
- First mover: what do you ask for? Ultimatum

Ultimatum Game

- Dividing \$10 million
- Player 1 makes a first and final offer
- Player 2 can accept or reject
- Game tree?

- B.I. outcome: $\left\{\right.$ demand $x_{1}=10$, accept \}
- Culture \& background matter

Alternating Offers

- Bargaining protocol matters!
- Sequential version of the demands game
- First mover: what do you ask for? Ultimatum
- Knowledge of rationality
- Knowledge of the game
- What if the other player can make a counter-offer?
- How can you change the rules to your advantage?

Right of First Refusal

- Incumbent makes offer x_{1}
- Player accepts or keeps
- Rival can make (costly!) offer x_{2}
- Player may sign or reject
- If sign: Incumbent can match
- If reject: Incumbent can make new offer
- Player chooses one of incumbent's offers (if any)

Right of First Refusal

- If player doesn't sign offer sheet, incumbent won't upgrade offer
- Player will accept original offer
- Incumbent would match any offer of $\$ 10 \mathrm{~m}$ or less

$$
\left(0,9.5-x_{2}, x_{2}\right)
$$

Right of First Refusal

- Whatever the player's action, the Rival loses by making an offer
- Two backwardsinduction outcomes
- Incumbent wins

RoFR: Winners and Losers

- Incumbent wins with an offer of (close to) zero!
- Would you make an offer (as the Rival)?
- What are the actual payoffs?
- Symmetric game?
- Salary cap?
- Repeated interaction?
- Why does the player lose out?

Player's Switching Cost

- Without the RoFR: the incumbent exploits the switching-cost advantage (worth \$2)
- With the RoFR: the player can be offered the whole $\$ 10$ million by the incumbent - how?
- Why does RoFR help?
- The player commits to rejecting a lower offer!

Takeaways

1) Relative scarcity $\boldsymbol{\rightarrow}$ value added $\boldsymbol{\rightarrow}$ bargaining power
2) Rules can play in your favor
3) Clauses as commitments
4) Get paid to play!

MIT OpenCourseWare
http://ocw.mit.edu

15.025 Game Theory for Strategic Advantage

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

