Lecture 10 Game Plan

- Hidden actions, moral hazard, and incentives
- Hidden traits, adverse selection, and signaling/screening

Hidden Information

"A little knowledge is a dangerous thing. So is a lot." - Albert Einstein

Strategic Manipulation of Hidden Information

Hidden Actions: Incentives

 Associates others' unobservable actions with observable outcomes

Hidden Traits: Signaling & Screening

 Associates others' unobservable traits with their observable actions

Incentives

High hurdle and a lot of money

Low hurdle and a little money

Hidden Effort

- You are contracting a project to an outside firm. The project has an uncertain outcome
 - Probability of success depends on firm's effort
 - prob. of success = 0.6 if effort is routine
 - prob. of success = 0.8 if effort is high
 - Firm has cost of effort
 - cost of routine effort = \$100,000
 - cost of high effort = \$150,000
 - Project outcome = \$600,000 if successful

Compensation Schemes

- I. Fixed Payment Scheme
- II. Observable Effort

- III. Bonus Scheme
- IV. Franchise Scheme

Incentive Scheme 1: Fixed Payment Scheme

If firm puts in routine effort: • Profit = Payment - \$100,000 If firm puts in high effort: • Profit = Payment - \$150,000 Firm puts in low effort! \rightarrow "moral hazard" Optimal Payment: lowest possible. • Payment = \$100,000 Expected Profit

= (.6)600,000 - \$100 = \$260K

Incentive Scheme 2 Observable Effort

- Firm puts in the effort level promised, given its pay
- Pay \$100,000 for routine effort:
 - E[Profit] = (.6)600,000 100,000 = \$260,000
- Pay additional \$50K for high effort:
 - E[Profit] = (.8)600,000 150,000 = \$330,000

 \rightarrow want to induce high effort

Expected Profit = \$330K

Problems

- Fixed payment scheme offers no incentives for high effort
 - High effort is more profitable
- Effort-based scheme cannot be implemented
 - Cannot monitor firm effort

Incentive Scheme 3 Wage and Bonus

- Suppose effort can not be observed
 Compensation contract must rely on
 - something that can be directly on observed and verified.
 - Project's success or failure
 - Related *probabilistically* to effort
 - Imperfect information

Salary + Bonus Schemes

A successful scheme must

- 1. Be "Incentive Compatible"
 Firm must *prefer* to put in high effort
- Induce Participation
 Firm must *prefer* to take the job

On-Line Game #7

Incentive Pay

Incentives

Cost of routine effort: \$100K
Cost of high effort: \$150K
Added cost of high effort: \$50K

Benefit of routine effort: .6b

- Benefit of high effort: .8b
- Added benefit of high effort: .2b

Incentive Compatibility

■ Firm will put in high effort if s + (0.8)b - 150,000 ≥ s + (0.6)b - 100,000

■ (0.2)b ≥ 50,000 marginal benefit > marginal cost

∎ b ≥ \$250,000

Participation

Expected salary must be large enough to make work worthwhile If induce high effort: b>\$250K expected salary = s+.8bbut even if s=0: .8b = \$200K > \$150KNo base salary needed!

Profitability Summary

- Greatest Profit from inducing high effort: \$280K (unless s<0)
- Greatest Profit from inducing low effort: \$260K
 - Using the "no brainer" solution
 - Salary = \$100K, no bonus
- Do we want to induce high effort?Carefully.
- Don't give away the farm to do it.

Optimal Salary and Bonus

- Incentive Compatibility:
 Firm will put in high effort if
 - $b \ge $250,000$
- Participation:
 - Firm will accept contract if $s + (0.8)b \ge 150,000$
- Solution
 - Minimum bonus:

$$b = $250,000$$

- Minimum base salary:
 - s = 150,000 (0.8)250,000 = -\$50,000

Negative Salaries?

- Ante in gambling
- Law firms / partnerships
- Work bonds / construction
- Startup funds

Interpretation

- \$50,000 is the amount of capital the firm must put up for the project
- \$50,000 is the fine the firm must pay if the project fails.
- Expected profit:
 - (.8)600,000 (.8)b s
 - = (.8)600,000 (.8)250,000 + 50,000
 - = \$330,000
- Same as with observable effort!!!

Incentive Scheme 4 Franchising

- Charge the firm f regardless of profits
 - Contractee takes all the risks and becomes the "residual owner" or franchisee
- Charge franchise fee equal to highest expected profit
 - Routine effort: .6(600K)-100K = 260K
 - High effort: .8(600K)-150K = 330K

Expected Profit: \$330K

Summary of Incentive Schemes

Observable Effort • Expected Profit: 330K • Expected Salary: 150K Salary and Bonus • Expected Profit: 330K • Expected Salary: 150K Franchising • Expected Profit: 330K • Expected Salary: 150K

Upside of Assigning Risk

- Assign risk to the agent, the party that has control of the hidden action
- This leads to
 - more efficient outcome
 - more profit for the principal

Downside of Assigning Risk

- Employees (unlike firms) are rarely willing to bare high risks
- Salary and Bonus
 - 0.8 chance: 200K
 - 0.2 chance: -50K

Franchising

- 0.8 chance: 270K
- 0.2 chance: -330K

Summary So Far

- Suppose you know agent's payoffs but can't observe its actions.
- You can still induce agent to take action you want by making it bear more risk
 - Franchising
 - Salary and bonus
- Such schemes can give as much profit as if you could observe actions perfectly!

Venture Capital

- A venture's success depends on whether a new technology will work
 - 50% chance it works
 - venture worth \$20M if it works
 - venture worth \$0 if it doesn't work
- Entrepreneur knows whether the technology works or not

Venture Capital

- Entrepreneur approaches you: "I am somewhat risk averse and hence prefer to take a smaller than 100% stake"
- How much are you willing to pay if she offers you

50% stake?

90% stake?

Problem of Adverse Selection

Expected value of venture given that she wants to sell 50%

• (50%*20 + 50%*0) = \$10M

Expected value of venture given that she wants to sell 90%

• 100%*0 = \$0M

Because of this "adverse selection", you are willing to pay *less* for a larger stake!!

Problem of Average Selection

- Only "bad" entrepreneur is willing to sell 90% of venture
 - adverse selection if you buy 90%
- But both "good" and "bad" are willing to sell 50% of venture
 - average selection if you buy 50%
- Still not ideal: you only want to invest when technology works!

Signaling & Screening

Screen = "Jump over this while I watch" High hurdle and a lot of money
Low hurdle and a little money

Signal = "Watch while I jump over this"

How to Screen

- Want to know an unobservable trait
- Identify a "hurdle" such that:
 - those who jump the hurdle get some benefit but at some cost
 - good" types find the benefit exceeds the cost
 - "bad" types find the cost exceeds the benefit
- This way we get self-selection: only "good" types will jump the hurdle

Auto Insurance

- Hidden Trait = high or low risk?
 - Half of the population are high risk, half are low risk
 - High risk drivers:
 - 90% chance of accident
 - Low risk drivers:
 - 10% chance of accident
 - Accidents cost \$10,000

Example: Auto Insurance

- The insurance company can not tell who is high or low risk
- Expected cost of accidents:
 - $(\frac{1}{2}.9 + \frac{1}{2}.1)10,000 = $5,000$
- Offer \$6,000 premium contract to make \$1,000 profit per customer
 What happens?

Self-Selection

High risk drivers:

- Don't buy insurance: (.9)(-10,000) = -9K
- Buy insurance: = -6K
- High risk drivers buy insurance
- Low-risk drivers:
 - Don't buy insurance: (.1)(-10,000) = -1K
 - Buy insurance: = -6K
 - Low risk drivers do not buy insurance

Only high risk drivers buy insurance

Adverse Selection

- Expected cost of accidents in population
 - $(\frac{1}{2}.9 + \frac{1}{2}.1)10,000 = $5,000$
- Expected cost of accidents among insured
 - •.9 (10,000) = \$9,000
 - Insurance company loss: \$3,000
- Cannot ignore this "adverse selection"
- If only going to have high risk drivers, might as well charge more (\$9,000)

Screening

Offer two contracts, so that the customers self-select

- Compare contracts aimed at highand low-risk drivers.
 - Which will have the higher premium?
 - Which will have the higher deductible?

"New Issues Puzzle"

- Firms conducting seasoned equity offerings (SEOs) afterwards perform worse on average than other firms
- Loughran and Ritter (J Finance 1995) argue you lose 30% over five years investing in a SEO
- 1970-1990 data. Comparison is relative to performance of "matched firm", i.e. one having similar characteristics that did not have any SEO in the following 5 years

SEO Underperformance

For this table, please see Table II from:

Loughran, Tim, and Jay Ritter. "The New Issues Puzzle" *Journal of Finance* 50, no. 1 (1995): 23-51.

Is the market failing?

- Why doesn't the market assimilate this information immediately?
- One possible explanation: positive selection
 - "Matched firms" are chosen retrospectively to be firms that will not have any SEO in <u>next</u> five years
 - Even if the market had *already* priced in the negative info, it might not have assimilated the (future) positive info about the matched firm!

Signaling

The seasoned offering is a signal about the status of the companies current projects as well as future ones.

... & Adverse Selection

- If the current projects are not profitable, the cost (in dilution) to the ownermanager of issuing new share is lower.
- Therefore, seasoned offering is likely associated with
 - bad news about the firm's present condition
 - Iow threshold for profitability of new project.

Dividends

"It would be uneconomic as well as pointless [for firms to pay dividends and raise capital simultaneously]"

- Merton Miller and Kevin Rock, 1982

Dividends

Why might it be make sense for a firm to issue a dividend and for investors to view this positively?

Bargaining with a Customer

- Customer either willing to pay \$20 or \$10, equally likely
- Your price is \$15 (zero costs), but customer asks for a deeply discounted price of \$5
- You don't know whether the customer has value \$20 or \$10

Bargaining with Customer

Information set represents that seller can't distinguish whether buyer has high or low value

Solving for "Sequential Eqm"

Seller's equilibrium choice depends on its **belief** about likelihood of High Value vs. Low Value

- By Don't Discount, seller is "risking 5 to gain 10"
- Don't Discount if p > 1/3

Other Approaches?

- If a customer "pleads poverty" for a discount, you have other options than simply to grant/refuse request
- What else might you do?

Clearance Sale

Clearance Sale as Screen

Clearance is an *effective screen* if q < 1/3

p > 1/3: No Sale better than Sale
p < 1/3: Sale better than No Sale

When (not) to have Clearance Sale (p < 1/3)

- Clearance Sale vs. Sale
 Clearance gives +9 more on High
 Clearance loses 1 + 5(1-q) on Low
- Only have Clearance when chance of High is sufficiently large

When (not) to have Clearance Sale (p > 1/3)

- Clearance Sale vs. No Sale
 Clearance gives -1 + 5q more on Low
 Clearance loses 1 on High
- Only have Clearance when chance of High is sufficiently low

When to have Clearance Sale (p = 1/3)

- If Clearance is ever your best strategy, it must be when you are indifferent between Sale and No Sale (p = 1/3)
 - "when you can't decide whether to offer a High- or Low-Quality product, offer both!!"

Versioning

- Suppose that high-quality/high-cost item will be equally profitable as low-quality/low-cost item
- In this case, you can always do better offering a *menu* of both items that acts as a consumer screen

Versioning: Example

Customer		
willingness	GOOD	BAD
to pay	PRODUCT	PRODUCT
HIGH CUSTOMEF	۶35 ع	\$20
LOW CUSTOMEF	२	\$15

Good product costs \$5, bad product \$0

Versioning: Example

Sell only Good → 2*(\$20-\$5) or (\$35-\$5)

- Sell only Bad \rightarrow 2*(\$15-\$0)
- Sell both \rightarrow (\$15-\$0) + (\$30-\$5)

Good-quality vs. Bad-quality

Summary

- Strategic issues arise when different players have different information
- Moral hazard given hidden action
 role for incentives / tying one's hands
- Adverse selection given hidden trait
 role for screening / signaling
- Next time: using hidden traits about yourself to make a credible commitment