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Introduction to Networks 
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Quotes for today 

 "A journey of a thousand miles begins 
with a single step."  
  -- Confucius 
 
 “You cannot travel the path until you 
have become the path itself” 
        --  Buddha 
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Network Models 

 Optimization models 

 Can be solved much faster than other LPs 

 Applications to industrial logistics, supply chain 
management, and a variety of systems 

 Today’s lecture:  introductory material, Eulerian 
tours, the Shortest Path Problem 

 Application of Network Models: 
http://jorlin.scripts.mit.edu/docs/publications/52-

applications%20of%20network.pdf 

 

http://jorlin.scripts.mit.edu/docs/publications/52-applications%20of%20network.pdf
http://jorlin.scripts.mit.edu/docs/publications/52-applications%20of%20network.pdf
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Notation and Terminology 
Note:  Network terminology is not (and never will be) 
standardized.     The same concept may be denoted in 
many different ways. 

Called: 
• NETWORK 
• directed graph  
• digraph 
• graph 

2 

1 

4 

3 

2 

1 

4 

3 

Class Handouts (Ahuja, 
Magnanti, Orlin) 

Node set  N = {1, 2, 3, 4}  
Arc Set 

Network  G = (N, A) 

 {(1,2), (1,3), (3,2), (3,4), (2,4)} 

Graph  G = (V, E)  

Edge set E 

Also Seen 

Vertex set  V 
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Directed and Undirected Networks 

2 

3 4 

1 

a 

b 

c 

d 

e 

An Undirected Graph 

2 

3 4 

1 

a 

b 

c 

d 

e 

A Directed Graph 

   The field of Network Optimization concerns 
optimization problems on networks 

 Networks are used to transport commodities 
• physical goods  (products, liquids) 
• communication 
• electricity, etc. 
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Networks are Everywhere 
 Physical Networks 

– Road Networks 
– Railway Networks 
– Airline traffic Networks 
– Electrical networks, e.g., the power grid 
– Communication networks 

 
 Social networks 

– Organizational charts 
– friendship networks 
– interaction networks (e.g., cell calls) 
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Overview:   

 Most O.R. models have networks or graphs as a 
major aspect 

 Next two lectures:  focus on network optimization 
problems.  

 Next:  representations of networks 

– Pictorial 

– Computer representations 



LOST: An 

Illustrative 

Example 

Image removed due to copyright restrictions. 

See interactive graphic “The Web of Intrigue” in “As Lost Ends, Creators Explain How They 
Did It, What’s Going On.” Wired Magazine, April 19, 2010. 

Wired has a handy character chart (yes, there might be spoilers!), created by 
bioinformics scientist Martin Krzywinski using Circos software (even that 
sentence is confusing) that shows how all of the characters are related.  For 
example, if you're wondering how many of the characters are related via 
"romance," click on Romance and the chart will change to show you that. Same 
with Chance, Family, Occupational, Touched By Jacob, Undisclosed. 

http://www.wired.com/magazine/2010/04/ff_lost/5/


An elegant representation of arcs 
 
 

http://flare.prefuse.org/apps/dependency_graph 

© UC Berkeley Visualization Lab. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://flare.prefuse.org/apps/dependency_graph
http://ocw.mit.edu/help/faq-fair-use/
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Leonhard Euler (1726) 
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Gottfried Leibniz (1666) 
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The Adjacency Matrix 
(for directed graphs) 

2 

3 4 

1 
a 

b 

c 

d 

e 

A Directed Graph 

•Have a row for each node 

1   2    3    4 
1 
2 
3 
4 

•Have a column for each node 
•Put a 1 in row i- column j if (i, j) is an arc  
What would happen if (4, 2) became (2, 4)? 
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The Adjacency Matrix 
(for undirected graphs) 

•Have a row for each node 
•Have a column for each node 
•Put a 1 in row i- column j if (i, j) is an arc  

2 

3 4 

1 
a 

b 

c 

d 

e 

An Undirected Graph 

The degree of a node is the number of incident arcs 

degree  
2 
3 
2 
3 

1   2    3    4 
1 
2 
3 
4 

Note:   each arc shows up twice in the adjacency matrix. 



✓ 

Question.  Is it possible that the 
number of nodes of odd degree is odd? 

13 

1. Yes 

2. No 
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Arc list representations 

2 

3 4 

1 
a 

b 

c 

d 

e 

A Directed Graph 

1:   (1,2), (1,4) 
2:   (2,3) 
3:    ∅  
4:   (4,2), (4,3) 

(1,2) (1,4) (2,3) (4,2) (4,3) 

1 2 3 4 Nodes 

Arcs 

Forward Star Representation. 

Node i points to first arc on arc 
list whose head is node i.  



Which uses computer space more 
efficiently for large road networks:  the 
adjacency matrix or adjacency lists? 

15 

✓ 
1. Adjacency matrix 

2.  Adjacency lists 

e.g. consider a road network with 10,000 
nodes, and with 40,000 arcs 

The adjacency matrix has 100 
million entries. 

The adjacency list has at most 
80,000 entries, two for each 
road.  
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On network representations 

 Each representation has its advantages 
– Major purpose of a representation 

• efficiency in algorithms 
• ease of use 

 
 
 Next: definitions for networks 
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Directed Path .  Example:  1, 2, 5, 3, 4 
  (or 1, a, 2, c, 5, d, 3, e, 4) 

•No node is repeated. 
•Directions are important. 

Cycle (or circuit or loop)    
    1, 2, 3, 1.  (or 1, a, 2, b, 3, e) 

•A path with 2 or more nodes, except 
that the first node is the last node. 
•Directions are ignored. 

Path:   Example:  5, 2, 3, 4.   
(or 5, c, 2, b, 3, e, 4) 

•No node is repeated. 
•Directions are ignored. 

Directed Cycle:  (1, 2, 3, 4, 1) or  
  1, a, 2, b, 3, c, 4, d, 1 

•No node is repeated, except that the first 
node is the last node.  
•Directions are important. 

2 3 4 a b 
c 

1 

5 d 
e 

2 

3 

4 

 a   b 

c   d 
1 e 

2 3 4 a b 
c 

1 

5 d 
e 

2 

3 

4 

 a   b 

c   d 
1 e 
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Walks 

2 

3 4 

1 

a 

b 

c 

d 

e 

5 

2 

3 4 

1 

a 

b 

c 

d 

e 

5 

Walks are paths that can repeat nodes and arcs 
Example of a directed walk:   1-2-3-5-4-2-3-5 
A walk is closed if its first and last nodes are the 
same. A closed walk is a cycle except that it can repeat 
nodes and arcs. 
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More terminology 

An undirected network is connected 

if every node can be reached from 
every other node by a path 

2 

1 

4 

3 

5 

2 

1 

4 

3 

5 

A directed network is connected if 
it’s undirected version is connected. 

This directed graph is connected, 
even though there is no directed 
path between 2 and 5. 
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On connectivity 

6 

1 

4 

3 

7 

2 

10 

8 

9 

5 

There are simple efficient procedures for 
determining if a graph is connected. 

Here is a graph with 
two components, 
that is maximally 
connected 
subgraphs. 

4 
7 

10 9 

We will not describe these algorithms, but will do a 
more general algorithm later in this lecture 
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The Bridges of Koenigsberg:  Euler 1736 

 “Graph Theory” began in 1736 
 Leonard Euler 

– Visited Koenigsberg 
– People wondered whether it is 

possible to take a walk, end up 
where you started from, and cross 
each bridge in Koenigsberg 
exactly once 

– Generally it was believed to be 
impossible 
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The town of Koenigsberg 

A 

B 

D 

C 

Annotated map © source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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The Bridges of Koenigsberg:  Euler 1736 

A 

D 

C 
B 

1 2 

4 

3 

7 

6 5 

Is it possible to start in A, cross over each bridge 
exactly once, and end up back in A? 
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The Bridges of Koenigsberg:  Euler 1736 

A 

D 

C 
B 

1 2 

4 

3 

7 

6 5 

Conceptualization:  Land masses are nodes 
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The Bridges of Koenigsberg:  Euler 1736 

1 2 

4 

3 

7 

6 5 

Conceptualization:  Bridges are arcs 

A 

C 

D 

B 
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The Bridges of Koenigsberg:  Euler 1736 

1 2 

4 

3 

7 

6 5 

Translation to graphs or networks:  Is there a walk 
starting at A and ending at A and passing through each 
arc exactly once?          Why isn’t there such a walk? 

A 

C 

D 

B 
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Adding two bridges creates such a walk 

A, 1, B, 5, D, 6, B, 4, C, 8, A, 3, C, 7, D, 9, B, 2, A 

1 2 
4 

3 

7 

6 5 

A 

C 

D 

B 

8 

9 

Here is the walk. 

Note:  the number of arcs incident to B is twice the 
number of times that B appears on the walk. 
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Eulerian cycle:  a closed walk that 
passes through each arc exactly once 

 Degree of a node = number of arcs incident to the node 

 Necessary condition:  each node has an even  degree. 

 Why necessary?  The degree of a node j is twice the 
number of times j appears on the walk (except for the 
initial and final node of the walk.) 

Theorem. A graph has an eulerian cycle if and only if 

the graph is connected and every node has even 

degree.  
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Eulerian path:  a walk that is not closed and 
passes through each arc exactly once 

Theorem.  A graph has an Eulerian path if and only if 
exactly two nodes have odd degree and the graph is 
connected. 
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Eulerian cycles 

 Eulerian cycles and extensions are used in 
practice 

 Mail Carrier routes: 
– visit each city block at least once 
– minimize travel time 
– other constraints in practice? 

 Trash pickup routes 
– visit each city block at least once 
– minimize travel time 
– other constraints in practice? 
 



Traveling Salesman Problem 
The 48 city problem. 

31 George Dantzig, Ray Fulkerson, and Selmer Johnson (1954)  



Mental Break 

32 
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More Definitions 

A network is connected if every node 
can be reached from every other 
node by a path 

2 

1 

4 

3 

5 

A spanning tree is a connected subset of a network 
including all nodes, but containing no cycles. 

2 

1 

4 

3 

5 

2 

1 

4 

3 

5 

2 

1 

4 

3 

5 
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More on Trees 
 An out-tree is a spanning tree in which every node has exactly 

one incoming arc except for the root. 

 Theorem.  In an out-tree, there is a directed path from the root 
to all other nodes.  (All paths come out of the root). 

 One can find the path by starting at the end and working 
backwards. 

2 

1 

4 

3 

5 

2 

1 

4 

3 

5 

7 8 9 

6 

10 11 

12 13 13 
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The Shortest Path Problem  

1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 

2 

What is the shortest path from a source node (often 
denoted as s) to a sink node, (often denoted as t)?  
What is the shortest path from node 1 to node 6? 
Assumptions for this lecture:   

1.  There is a path from the source to all other nodes. 
2.  All arc lengths are non-negative 
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Shortest Path Problem 

 Where does it arise in practice? 
– Common applications 

• shortest paths in a vehicle (Navigator) 
• shortest paths in internet routing 
• shortest paths around MIT 

– and less obvious applications, as in the course 
readings (see URL on slide 3 of this lecture). 
 

 How will we solve the shortest path problem? 
– Dijkstra’s algorithm 



Application 1:  Shortest paths in a 
Transportation Network 

37  

Add a node for 
every “intersection”.  
Add arcs for roads. 
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Dijkstra’s Algorithm  

Exercise:  find the shortest path from node 1 to all 
other nodes. Keep track of distances using labels, d(i) 
and each node’s immediate predecessor, pred(i).  

d(1)= 0, pred(1)=0;  

d(2) = 2, pred(2)=1 

Find the other distances, in order of increasing 
distance from node 1.  

1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 

2 

Exercise:   
Find the 
shortest paths 
by inspection. 
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Key observations 
 Suppose that d(i) is the length of some path from node 1 

to node i. 
 Suppose that there is an arc (i, j) of length cij. 
 Then there is a path from node 1 to node j of length at 

most d(i) + cij. 
 

10 

In this case, there is a path from 1 to j of length 72.   
We can reduce d(j) to 72. 

i j 
d(i) = 62 

1 P 

Length(P) = 62 

P
’ Length(P’) = 78 d(j) = 78 
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A Key Procedure in Shortest Path Algorithms 
 

 At each iteration d(j) is the length of some path from 
node 1 to node j.  (If no path is known, then d(j) = ∅) 

 

78 

Up to this point, the best path from 1 to j had length 78 
But P, (i,j) is a path from 1 to j of length 72. 

72 

     Procedure Update(i) 
for  each  (i,j) ∈ A(i)   do 
if  d(j) > d(i) + cij then d(j) : = d(i) + cij and  
    pred(j) : = i; 

 

i j 
62 10 

1 
P 
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Dijkstra’s Algorithm 

begin 
 d(s) : = 0 and pred(s) : = 0; 
 d(j) : = ∅ for each j ∈ N - {s}; 
 LIST : = {s}; 
 while  LIST  ≠ ∅ do 
 begin 
  let  d(i)  : =  min {d(j) : j ∈ LIST}; 
  remove node i from LIST; 
  update(i) 
  if d(j) decreases from ∞,  

            place j inLIST 
 end 
end 

Initialize distances. 

LIST = set of 
temporary nodes 

Select the node i 
on LIST with 
minimum distance 
label, and then 
update(i) 



1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

     d(2) = ∞ 
pred(2) = ∅ 

LIST = {1, 

d(1) = 0 
pred(1) = ∅ 
 

     d(4) = ∞ 
pred(4) = ∅ 

     d(3) = ∞ 
pred(3) = ∅ 

     d(5) = ∞ 
pred(5) = ∅ 

     d(6) = ∞ 
pred(6) = ∅ 

  

Initialize 

 d( )   = {0, 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

     d(2) = ∞ 
pred(2) = ∅ 

LIST = {1, 

d(1) = 0 
pred(1) = ∅ 
 

     d(4) = ∞ 
pred(4) = ∅ 

     d(3) = ∞ 
pred(3) = ∅ 

     d(5) = ∞ 
pred(5) = ∅ 

     d(6) = ∞ 
pred(6) = ∅ 

  

Find the node i 
on LIST with 
minimum 
distance label.   

 d( )   = {0, 

Remove i from 
LIST.  Make i 
permanent.   

LIST = { 

 d( )   = { 

1 
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     d(3) = ∞ 
pred(3) = ∅ 

1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

     d(2) = ∞ 
pred(2) = ∅ 

LIST = {1, 

d(1) = 0 
pred(1) = ∅ 
 

     d(4) = ∞ 
pred(4) = ∅ 

     d(3) = 4 
pred(3) = 1 

     d(5) = ∞ 
pred(5) = ∅ 

  d(6) = ∞ 
pred(6) = ∅ 

  

update(1) 

 d( )   = {0, 

LIST = { 

 d( )   = { 

1 

     d(2) = 2 
pred(2) = 1 

LIST = { 2, 

 d( )   = { 2 

LIST = { 2, 3 

 d( )   = { 2, 4 

1 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

     d(2) =  
pred(2) =  

LIST = {1, 

d(1) = 0 
pred(1) = ∅ 
 

     d(4) = ∞ 
pred(4) = ∅ 

     d(3) = 4 
pred(3) = 1 

     d(5) = ∞ 
pred(5) = ∅ 

  d(6) = ∞ 
pred(6) = ∅ 

  
 d( )   = {0, 

LIST = { 

 d( )   = { 

1 

     d(2) = 2 
pred(2) = 1 

LIST = { 2, 

 d( )   = { 2 

LIST = { 2, 3 

 d( )   = { 2, 4 

Find the node i 
on LIST with 
minimum 
distance label.   

Remove i from 
LIST.  Make i 
permanent.   

LIST = { 3 

 d( )   = { 4 

2 



Arcs (2, 3), (2, 4) and (2,5) will be scanned next.  
Which nodes will have their distance label changed? 

46 

1 

2 

3 

4 

5 

6 

2 

2   1 

3 
4 

2 

   3 
2 

d(2) = 2 

     d(3) = 4      d(5) = ∞ 

  d(6) = ∞ 1 

2 
d(4) = ∞ 

d(1) = 0 

4 

✓ 
1.   2, 3, 4 and 5 

2.   3, 4, and 5 

3.   4 and 5 

4.   none of the above. 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

     d(4) = ∞ 
pred(4) = ∅ 

     d(3) = 4 
pred(3) = 1 

     d(5) = ∞ 
pred(5) = ∅ 

  d(6) = ∞ 
pred(6) = ∅ 

1 

Update(2) 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

2 

LIST = { 3, 

 d( )   = { 4 

LIST = { 3, 

 d( )   = { 3 

LIST = { 3, 4 

 d( )   = { 3, 6 

LIST = { 3, 4, 5 

 d( )   = { 3, 6, 4 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

  d(6) = ∞ 
pred(6) = ∅ 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

LIST = { 3, 4, 5 

 d( )   = { 3, 6, 4 

     d(2) = 2 
pred(2) = 1 

Find the node i 
on LIST with 
minimum 
distance label.   

Remove i from 
LIST.  Make i 
permanent.   

3 

LIST = {4, 5 

 d( )   = {6, 4 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

  d(6) = ∞ 
pred(6) =∅ 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

LIST = {4, 5 

 d( )   = {6, 4 

3 

Update(3) 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

  d(6) = ∞ 
pred(6) = ∅ 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

LIST = {4, 5 

 d( )   = {6, 4 

Find the node i 
on LIST with 
minimum 
distance label.   

Remove i from 
LIST.  Make i 
permanent.   

5 

LIST = {4 

 d( )   = {6 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

  d(6) = ∞ 
pred(6) = ∅ 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

LIST = {4 

 d( )   = {6 

5 

Update(5) 

  d(6) = 6 
pred(6) = 5 

LIST = {4, 6 

 d( )   = {6, 6 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

1 

2 

d(4) = 6 

5 

  d(6) = 6 

Which node will be scanned next according 
to the usual rule? 

✓ 

1.   node 4 

2.   node 6 

3.   either node 4 or node 6; both choices are OK. 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

  d(6) = 6 
pred(6) = 5 

LIST = {4, 6 

 d( )   = {6, 6 

Find the node i 
on LIST with 
minimum 
distance label.   

Remove i from 
LIST.  Make i 
permanent.   

LIST = {6 

 d( )   = {6 

4 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

  d(6) = 6 
pred(6) = 5 

LIST = {6 

 d( )   = {6 

4 

Update(4) 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

  d(6) = 6 
pred(6) = 5 

LIST = {6 

 d( )   = {6 

Find the node i 
on LIST with 
minimum 
distance label.   

Remove i from 
LIST.  Make i 
permanent.   

LIST = { 

 d( )   = { 

6 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

  d(6) = 6 
pred(6) = 5 

LIST = {6 

 d( )   = {6 

LIST = { 

 d( )   = { 

6 

Update(6) 

Node 6 has no 
outgoing arcs. 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

  d(6) = 6 
pred(6) = 5 

LIST = {6 

 d( )   = {6 

LIST = { 

 d( )   = { 

Find the node i 
on LIST with 
minimum 
distance label.   

LIST = ∅.  The 
algorithm ends. 
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1 

2 

3 

4 

5 

6 

2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

The shortest path from node 1 to node 6. 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

  d(6) = 6 
pred(6) = 5 

LIST = {6 

 d( )   = {6 

LIST = { 

 d( )   = { 

Trace back the path from node 
6 to node 1 using the 
predecessors. 
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2 

4 

2   1 

3 

4 

2 

   3 
2 

d(1) = 0 
pred(1) = ∅ 
 

The shortest path from node 1 to node 6. 

1 

2 

     d(3) = 3 
pred(3) = 2 

     d(4) = 6 
pred(4) = 2 

     d(5) = 4 
pred(5) = 2 

     d(2) = 2 
pred(2) = 1 

  d(6) = 6 
pred(6) = 5 

LIST = {6 

 d( )   = {6 

LIST = { 

 d( )   = { 

The “predecessor” arcs form 
an out-tree rooted at node 1. 
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Comments on Dijkstra’s Algorithm 
 Dijkstra’s algorithm makes nodes permanent in 

increasing order of distance from the origin 
node. 

 Dijkstra’s algorithm is efficient in its current 
form.  The running time grows as n2, where n is 
the number of nodes 

 It can be made much more efficient 

 In practice it runs in time linear in the number of 
arcs (or almost so). 
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Edsger Dijkstra 
1930-2002 

 

 

Turing Prize 1972 
• development of Algol 

• programming languages 

• graph theory 

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra 

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
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Summary 

 The Eulerian cycle problem 

 The shortest path problem 

 Dijkstra’s algorithm finds the shortest path from node 1 
to all other nodes in increasing order of distance from 
the source node. 

 The bottleneck operation is identifying the minimum 
distance label.  One can speed this up, and get an 
incredibly efficient algorithm 
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