
1

15.053/8 April 11, 2013

Introduction to Networks

2

Quotes for today

 "A journey of a thousand miles begins
with a single step."
 -- Confucius

 “You cannot travel the path until you
have become the path itself”
 -- Buddha

3

Network Models

 Optimization models

 Can be solved much faster than other LPs

 Applications to industrial logistics, supply chain
management, and a variety of systems

 Today’s lecture: introductory material, Eulerian
tours, the Shortest Path Problem

 Application of Network Models:
http://jorlin.scripts.mit.edu/docs/publications/52-

applications%20of%20network.pdf

http://jorlin.scripts.mit.edu/docs/publications/52-applications%20of%20network.pdf
http://jorlin.scripts.mit.edu/docs/publications/52-applications%20of%20network.pdf

4

Notation and Terminology
Note: Network terminology is not (and never will be)
standardized. The same concept may be denoted in
many different ways.

Called:
• NETWORK
• directed graph
• digraph
• graph

2

1

4

3

2

1

4

3

Class Handouts (Ahuja,
Magnanti, Orlin)

Node set N = {1, 2, 3, 4}
Arc Set

Network G = (N, A)

 {(1,2), (1,3), (3,2), (3,4), (2,4)}

Graph G = (V, E)

Edge set E

Also Seen

Vertex set V

5

Directed and Undirected Networks

2

3 4

1

a

b

c

d

e

An Undirected Graph

2

3 4

1

a

b

c

d

e

A Directed Graph

 The field of Network Optimization concerns
optimization problems on networks

 Networks are used to transport commodities
• physical goods (products, liquids)
• communication
• electricity, etc.

6

Networks are Everywhere
 Physical Networks

– Road Networks
– Railway Networks
– Airline traffic Networks
– Electrical networks, e.g., the power grid
– Communication networks

 Social networks

– Organizational charts
– friendship networks
– interaction networks (e.g., cell calls)

7

Overview:

 Most O.R. models have networks or graphs as a
major aspect

 Next two lectures: focus on network optimization
problems.

 Next: representations of networks

– Pictorial

– Computer representations

LOST: An

Illustrative

Example

Image removed due to copyright restrictions.

See interactive graphic “The Web of Intrigue” in “As Lost Ends, Creators Explain How They
Did It, What’s Going On.” Wired Magazine, April 19, 2010.

Wired has a handy character chart (yes, there might be spoilers!), created by
bioinformics scientist Martin Krzywinski using Circos software (even that
sentence is confusing) that shows how all of the characters are related. For
example, if you're wondering how many of the characters are related via
"romance," click on Romance and the chart will change to show you that. Same
with Chance, Family, Occupational, Touched By Jacob, Undisclosed.

http://www.wired.com/magazine/2010/04/ff_lost/5/

An elegant representation of arcs

http://flare.prefuse.org/apps/dependency_graph

© UC Berkeley Visualization Lab. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://flare.prefuse.org/apps/dependency_graph
http://ocw.mit.edu/help/faq-fair-use/

Graph of Ph.D. advisors

James Orlin (1981)

Arthur F. Veinott, Jr. (1960)

Cyrus Derman (1954)

Herbert E. Robbins (1938)

Hassler Whitney (1932)

George Birkoff (1907)

E.H. Moore (1885)

H.A Newton (1850)

Michel Chasles (1814)

Simeon Denis Poisson (1800)

Joseph Louis Lagrange (1754)

Leonhard Euler (1726)

Johann Bernoulli (1694)

Jacob Bernoulli (1676)

Nicolas Malebranche (1672)

Gottfried Leibniz (1666)

11

The Adjacency Matrix
(for directed graphs)

2

3 4

1
a

b

c

d

e

A Directed Graph

•Have a row for each node

1 2 3 4
1
2
3
4

•Have a column for each node
•Put a 1 in row i- column j if (i, j) is an arc
What would happen if (4, 2) became (2, 4)?

12

The Adjacency Matrix
(for undirected graphs)

•Have a row for each node
•Have a column for each node
•Put a 1 in row i- column j if (i, j) is an arc

2

3 4

1
a

b

c

d

e

An Undirected Graph

The degree of a node is the number of incident arcs

degree
2
3
2
3

1 2 3 4
1
2
3
4

Note: each arc shows up twice in the adjacency matrix.

✓

Question. Is it possible that the
number of nodes of odd degree is odd?

13

1. Yes

2. No

14

Arc list representations

2

3 4

1
a

b

c

d

e

A Directed Graph

1: (1,2), (1,4)
2: (2,3)
3: ∅
4: (4,2), (4,3)

(1,2) (1,4) (2,3) (4,2) (4,3)

1 2 3 4 Nodes

Arcs

Forward Star Representation.

Node i points to first arc on arc
list whose head is node i.

Which uses computer space more
efficiently for large road networks: the
adjacency matrix or adjacency lists?

15

✓
1. Adjacency matrix

2. Adjacency lists

e.g. consider a road network with 10,000
nodes, and with 40,000 arcs

The adjacency matrix has 100
million entries.

The adjacency list has at most
80,000 entries, two for each
road.

16

On network representations

 Each representation has its advantages
– Major purpose of a representation

• efficiency in algorithms
• ease of use

 Next: definitions for networks

17

Directed Path . Example: 1, 2, 5, 3, 4
 (or 1, a, 2, c, 5, d, 3, e, 4)

•No node is repeated.
•Directions are important.

Cycle (or circuit or loop)
 1, 2, 3, 1. (or 1, a, 2, b, 3, e)

•A path with 2 or more nodes, except
that the first node is the last node.
•Directions are ignored.

Path: Example: 5, 2, 3, 4.
(or 5, c, 2, b, 3, e, 4)

•No node is repeated.
•Directions are ignored.

Directed Cycle: (1, 2, 3, 4, 1) or
 1, a, 2, b, 3, c, 4, d, 1

•No node is repeated, except that the first
node is the last node.
•Directions are important.

2 3 4 a b
c

1

5 d
e

2

3

4

 a b

c d
1 e

2 3 4 a b
c

1

5 d
e

2

3

4

 a b

c d
1 e

18

Walks

2

3 4

1

a

b

c

d

e

5

2

3 4

1

a

b

c

d

e

5

Walks are paths that can repeat nodes and arcs
Example of a directed walk: 1-2-3-5-4-2-3-5
A walk is closed if its first and last nodes are the
same. A closed walk is a cycle except that it can repeat
nodes and arcs.

19

More terminology

An undirected network is connected

if every node can be reached from
every other node by a path

2

1

4

3

5

2

1

4

3

5

A directed network is connected if
it’s undirected version is connected.

This directed graph is connected,
even though there is no directed
path between 2 and 5.

20

On connectivity

6

1

4

3

7

2

10

8

9

5

There are simple efficient procedures for
determining if a graph is connected.

Here is a graph with
two components,
that is maximally
connected
subgraphs.

4
7

10 9

We will not describe these algorithms, but will do a
more general algorithm later in this lecture

21

The Bridges of Koenigsberg: Euler 1736

 “Graph Theory” began in 1736
 Leonard Euler

– Visited Koenigsberg
– People wondered whether it is

possible to take a walk, end up
where you started from, and cross
each bridge in Koenigsberg
exactly once

– Generally it was believed to be
impossible

22

The town of Koenigsberg

A

B

D

C

Annotated map © source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

23

The Bridges of Koenigsberg: Euler 1736

A

D

C
B

1 2

4

3

7

6 5

Is it possible to start in A, cross over each bridge
exactly once, and end up back in A?

24

The Bridges of Koenigsberg: Euler 1736

A

D

C
B

1 2

4

3

7

6 5

Conceptualization: Land masses are nodes

25

The Bridges of Koenigsberg: Euler 1736

1 2

4

3

7

6 5

Conceptualization: Bridges are arcs

A

C

D

B

26

The Bridges of Koenigsberg: Euler 1736

1 2

4

3

7

6 5

Translation to graphs or networks: Is there a walk
starting at A and ending at A and passing through each
arc exactly once? Why isn’t there such a walk?

A

C

D

B

27

Adding two bridges creates such a walk

A, 1, B, 5, D, 6, B, 4, C, 8, A, 3, C, 7, D, 9, B, 2, A

1 2
4

3

7

6 5

A

C

D

B

8

9

Here is the walk.

Note: the number of arcs incident to B is twice the
number of times that B appears on the walk.

28

Eulerian cycle: a closed walk that
passes through each arc exactly once

 Degree of a node = number of arcs incident to the node

 Necessary condition: each node has an even degree.

 Why necessary? The degree of a node j is twice the
number of times j appears on the walk (except for the
initial and final node of the walk.)

Theorem. A graph has an eulerian cycle if and only if

the graph is connected and every node has even

degree.

29

Eulerian path: a walk that is not closed and
passes through each arc exactly once

Theorem. A graph has an Eulerian path if and only if
exactly two nodes have odd degree and the graph is
connected.

30

Eulerian cycles

 Eulerian cycles and extensions are used in
practice

 Mail Carrier routes:
– visit each city block at least once
– minimize travel time
– other constraints in practice?

 Trash pickup routes
– visit each city block at least once
– minimize travel time
– other constraints in practice?

Traveling Salesman Problem
The 48 city problem.

31 George Dantzig, Ray Fulkerson, and Selmer Johnson (1954)

Mental Break

32

33

More Definitions

A network is connected if every node
can be reached from every other
node by a path

2

1

4

3

5

A spanning tree is a connected subset of a network
including all nodes, but containing no cycles.

2

1

4

3

5

2

1

4

3

5

2

1

4

3

5

34

More on Trees
 An out-tree is a spanning tree in which every node has exactly

one incoming arc except for the root.

 Theorem. In an out-tree, there is a directed path from the root
to all other nodes. (All paths come out of the root).

 One can find the path by starting at the end and working
backwards.

2

1

4

3

5

2

1

4

3

5

7 8 9

6

10 11

12 13 13

35

The Shortest Path Problem

1

2

3

4

5

6

2

4

2 1

3

4

2

 3

2

What is the shortest path from a source node (often
denoted as s) to a sink node, (often denoted as t)?
What is the shortest path from node 1 to node 6?
Assumptions for this lecture:

1. There is a path from the source to all other nodes.
2. All arc lengths are non-negative

36

Shortest Path Problem

 Where does it arise in practice?
– Common applications

• shortest paths in a vehicle (Navigator)
• shortest paths in internet routing
• shortest paths around MIT

– and less obvious applications, as in the course
readings (see URL on slide 3 of this lecture).

 How will we solve the shortest path problem?
– Dijkstra’s algorithm

Application 1: Shortest paths in a
Transportation Network

37

Add a node for
every “intersection”.
Add arcs for roads.

38

Dijkstra’s Algorithm

Exercise: find the shortest path from node 1 to all
other nodes. Keep track of distances using labels, d(i)
and each node’s immediate predecessor, pred(i).

d(1)= 0, pred(1)=0;

d(2) = 2, pred(2)=1

Find the other distances, in order of increasing
distance from node 1.

1

2

3

4

5

6

2

4

2 1

3

4

2

 3

2

Exercise:
Find the
shortest paths
by inspection.

39

Key observations
 Suppose that d(i) is the length of some path from node 1

to node i.
 Suppose that there is an arc (i, j) of length cij.
 Then there is a path from node 1 to node j of length at

most d(i) + cij.

10

In this case, there is a path from 1 to j of length 72.
We can reduce d(j) to 72.

i j
d(i) = 62

1 P

Length(P) = 62

P
’ Length(P’) = 78 d(j) = 78

40

A Key Procedure in Shortest Path Algorithms

 At each iteration d(j) is the length of some path from
node 1 to node j. (If no path is known, then d(j) = ∅)

78

Up to this point, the best path from 1 to j had length 78
But P, (i,j) is a path from 1 to j of length 72.

72

 Procedure Update(i)
for each (i,j) ∈ A(i) do
if d(j) > d(i) + cij then d(j) : = d(i) + cij and
 pred(j) : = i;

i j
62 10

1
P

41

Dijkstra’s Algorithm

begin
 d(s) : = 0 and pred(s) : = 0;
 d(j) : = ∅ for each j ∈ N - {s};
 LIST : = {s};
 while LIST ≠ ∅ do
 begin
 let d(i) : = min {d(j) : j ∈ LIST};
 remove node i from LIST;
 update(i)
 if d(j) decreases from ∞,

 place j inLIST
 end
end

Initialize distances.

LIST = set of
temporary nodes

Select the node i
on LIST with
minimum distance
label, and then
update(i)

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

 d(2) = ∞
pred(2) = ∅

LIST = {1,

d(1) = 0
pred(1) = ∅

 d(4) = ∞
pred(4) = ∅

 d(3) = ∞
pred(3) = ∅

 d(5) = ∞
pred(5) = ∅

 d(6) = ∞
pred(6) = ∅

Initialize

 d() = {0,

43

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

 d(2) = ∞
pred(2) = ∅

LIST = {1,

d(1) = 0
pred(1) = ∅

 d(4) = ∞
pred(4) = ∅

 d(3) = ∞
pred(3) = ∅

 d(5) = ∞
pred(5) = ∅

 d(6) = ∞
pred(6) = ∅

Find the node i
on LIST with
minimum
distance label.

 d() = {0,

Remove i from
LIST. Make i
permanent.

LIST = {

 d() = {

1

44

 d(3) = ∞
pred(3) = ∅

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

 d(2) = ∞
pred(2) = ∅

LIST = {1,

d(1) = 0
pred(1) = ∅

 d(4) = ∞
pred(4) = ∅

 d(3) = 4
pred(3) = 1

 d(5) = ∞
pred(5) = ∅

 d(6) = ∞
pred(6) = ∅

update(1)

 d() = {0,

LIST = {

 d() = {

1

 d(2) = 2
pred(2) = 1

LIST = { 2,

 d() = { 2

LIST = { 2, 3

 d() = { 2, 4

1

45

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

 d(2) =
pred(2) =

LIST = {1,

d(1) = 0
pred(1) = ∅

 d(4) = ∞
pred(4) = ∅

 d(3) = 4
pred(3) = 1

 d(5) = ∞
pred(5) = ∅

 d(6) = ∞
pred(6) = ∅

 d() = {0,

LIST = {

 d() = {

1

 d(2) = 2
pred(2) = 1

LIST = { 2,

 d() = { 2

LIST = { 2, 3

 d() = { 2, 4

Find the node i
on LIST with
minimum
distance label.

Remove i from
LIST. Make i
permanent.

LIST = { 3

 d() = { 4

2

Arcs (2, 3), (2, 4) and (2,5) will be scanned next.
Which nodes will have their distance label changed?

46

1

2

3

4

5

6

2

2 1

3
4

2

 3
2

d(2) = 2

 d(3) = 4 d(5) = ∞

 d(6) = ∞ 1

2
d(4) = ∞

d(1) = 0

4

✓
1. 2, 3, 4 and 5

2. 3, 4, and 5

3. 4 and 5

4. none of the above.

47

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

 d(4) = ∞
pred(4) = ∅

 d(3) = 4
pred(3) = 1

 d(5) = ∞
pred(5) = ∅

 d(6) = ∞
pred(6) = ∅

1

Update(2)

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

2

LIST = { 3,

 d() = { 4

LIST = { 3,

 d() = { 3

LIST = { 3, 4

 d() = { 3, 6

LIST = { 3, 4, 5

 d() = { 3, 6, 4

48

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

 d(6) = ∞
pred(6) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

LIST = { 3, 4, 5

 d() = { 3, 6, 4

 d(2) = 2
pred(2) = 1

Find the node i
on LIST with
minimum
distance label.

Remove i from
LIST. Make i
permanent.

3

LIST = {4, 5

 d() = {6, 4

49

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

 d(6) = ∞
pred(6) =∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

LIST = {4, 5

 d() = {6, 4

3

Update(3)

50

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

 d(6) = ∞
pred(6) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

LIST = {4, 5

 d() = {6, 4

Find the node i
on LIST with
minimum
distance label.

Remove i from
LIST. Make i
permanent.

5

LIST = {4

 d() = {6

51

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

 d(6) = ∞
pred(6) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

LIST = {4

 d() = {6

5

Update(5)

 d(6) = 6
pred(6) = 5

LIST = {4, 6

 d() = {6, 6

52

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

1

2

d(4) = 6

5

 d(6) = 6

Which node will be scanned next according
to the usual rule?

✓

1. node 4

2. node 6

3. either node 4 or node 6; both choices are OK.

53

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

 d(6) = 6
pred(6) = 5

LIST = {4, 6

 d() = {6, 6

Find the node i
on LIST with
minimum
distance label.

Remove i from
LIST. Make i
permanent.

LIST = {6

 d() = {6

4

54

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

 d(6) = 6
pred(6) = 5

LIST = {6

 d() = {6

4

Update(4)

55

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

 d(6) = 6
pred(6) = 5

LIST = {6

 d() = {6

Find the node i
on LIST with
minimum
distance label.

Remove i from
LIST. Make i
permanent.

LIST = {

 d() = {

6

56

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

 d(6) = 6
pred(6) = 5

LIST = {6

 d() = {6

LIST = {

 d() = {

6

Update(6)

Node 6 has no
outgoing arcs.

57

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

 d(6) = 6
pred(6) = 5

LIST = {6

 d() = {6

LIST = {

 d() = {

Find the node i
on LIST with
minimum
distance label.

LIST = ∅. The
algorithm ends.

58

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

The shortest path from node 1 to node 6.

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

 d(6) = 6
pred(6) = 5

LIST = {6

 d() = {6

LIST = {

 d() = {

Trace back the path from node
6 to node 1 using the
predecessors.

59

1

2

3

4

5

6

2

4

2 1

3

4

2

 3
2

d(1) = 0
pred(1) = ∅

The shortest path from node 1 to node 6.

1

2

 d(3) = 3
pred(3) = 2

 d(4) = 6
pred(4) = 2

 d(5) = 4
pred(5) = 2

 d(2) = 2
pred(2) = 1

 d(6) = 6
pred(6) = 5

LIST = {6

 d() = {6

LIST = {

 d() = {

The “predecessor” arcs form
an out-tree rooted at node 1.

60

Comments on Dijkstra’s Algorithm
 Dijkstra’s algorithm makes nodes permanent in

increasing order of distance from the origin
node.

 Dijkstra’s algorithm is efficient in its current
form. The running time grows as n2, where n is
the number of nodes

 It can be made much more efficient

 In practice it runs in time linear in the number of
arcs (or almost so).

61

Edsger Dijkstra
1930-2002

Turing Prize 1972
• development of Algol

• programming languages

• graph theory

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

62

Summary

 The Eulerian cycle problem

 The shortest path problem

 Dijkstra’s algorithm finds the shortest path from node 1
to all other nodes in increasing order of distance from
the source node.

 The bottleneck operation is identifying the minimum
distance label. One can speed this up, and get an
incredibly efficient algorithm

MIT OpenCourseWare
http://ocw.mit.edu

15.053 Optimization Methods in Management Science
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

