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Mita, an  MIT 

Beaver Amit, an  MIT Beaver 

Hi, welcome to a 

tutorial on sensitivity 

analysis for linear 

programs with two 

variables. 

 

 

It’s good to see you 

again. 
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For our running example, we will use David’s Tool Company 

(DTC).    You may recall that DTC makes slingshot kits and 

shields.  They have time constraints for gathering stones, 

smoothing stones, and delivery.  They also have upper bounds 

on the total demand for slingshot kits and shields.  We use days 

instead of hours as the unit of time.  We assume that each 

person works for 10 hours per day.  

       Pack of 10 
Slingshot 
Kits 

 Pack of 10 
Stone 
Shields 

Resources 

 Stone Gathering 
time 

2 days 3 days 10 days 

 Stone Smoothing 1 day 2 days 6 days 

  Delivery time 1 day 1 days 5 days 

 Demand 4 packs 3 packs 

Profit 30 shekels 50 shekels  
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K + S  =  5 

The feasible region is in yellow.  The optimal solution is at (2,2).  

The optimal objective value is z = 160.  Sensitivity analysis deals 

with the following question:  how does the optimal solution value 

change as the data for the problem changes.  For example, 

suppose that we had 11 days of gathering time instead of 10 

days.  By how much would the optimum objective value 

improve? 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 

K +  2 S = 6 

 2K + 3 S  =  10 

optimal solution 
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Why should we 

want to change 

the data?  If we 

are using data, 

then aren’t the 

numbers correct?   

We all wish that numbers were correct, but 

they almost never are.  They usually are 

estimates, and sometimes they are very bad 

estimates.  For example, we write that it 

takes 2 days to smooth 10 shields.  But this 

is at best an estimate based on previous 

experience.  Each shield may take a 

different amount of time, and the time it 

takes may depend on how tired the stone 

smoother is.  

The upper bound on demand is also an 

estimate, or forecast.  And forecasts 

are often terrible.  And don’t even get 

me started on measures of costs.  In 

large firms, everyone computes costs a 

little differently.  
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I don’t 
understand.  If 

the numbers are 

not correct, 

won’t the 

answers be 

garbage?  And 

what is the point 

of sensitivity 

analysis on bad 

data? 

I said that the numbers were usually estimates, not that they 

were “garbage.”  By solving the LP, you often get a solution 

that is useful.  It is usually far better than doing nothing or 

relying entirely on intuition.  

 

As for sensitivity analysis, it has many uses.  You can determine 

how sensitive the solution is to the data.  For example, suppose 

that changing the demand of slingshot kits by 1 increased the 

profit by a lot.  Then we may want to put some effort into 

advertising to increase demand. Or perhaps we would do 

surveys to better estimate the demand.    

On the other hand, suppose that 

increased demand of slingshot kits 

does not improve the profit.  Then 

there is no advantage in trying to 

increase the demand.  And we 

probably would not be interested in 

surveys.  
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Now I’m even 

more confused.  

Marketing and 

surveys are not 

part of the DTC 

problem. 

Often linear programs are solved in order to gain insights.  

Once the insights are gained, the problem becomes a little 

different.  Management might consider different options. 

 

And sensitivity analysis has other uses as well.  For example, 

the DTC problem can be viewed as a “production mix” problem.  

In production mix problems, one may want to check to see if the 

optimal solution for the original problem is a good solution under 

a number of different scenarios. 

 

We’ll talk more about sensitivity analysis later in this course. 

OK.  I think I 

get it.  But why 

are we limiting 

ourselves to 2 

variables and 2 

dimensions? 

By restricting 

attention to 2 

dimensions, we 

can use 

geometrical 

insights to help 

us understand 

sensitivity 

analysis. 
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I really like Tom, but I am 

also glad to be able to 

stop answering his 

questions and move on 

to the actual tutorial. 

I wish I could 

ask questions 

as good as 

the ones that 

Tom asked.  

Turkeys are 

so smart. 

Our first topic is “shadow 

prices.”  The shadow price 

of a constraint is the 

change in the optimal 

objective function if the 

RHS of the constraint is 

increased by 1. 1 

1  This definition is usually correct.  But we will make it even 

more precise later on.   
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In order to motivate shadow prices, 

consider the following situation. 

Suppose that one of the children in 

town, say Beth, volunteered to do 

stone gathering for one day.  What 

would be the extra profit for David, 

assuming that he does not pay her? 

We could easily solve the linear 

program a second time with 

modified RHS and answer the 

question.  But instead, we will 

carefully look at the graphical 

solution and see what insights 

we can obtain. 

In order to do the 

analysis, we will assume 

that Beth’s ability to do 

stone gathering is the 

same as given in the 

original data. 
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The original objective 

objective function was 

160.  The new optimum 

objective value is 170.  

Thus, the shadow price is 

170 – 160 = 10.   

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 

K +  2 S = 6 

 2K + 3 S  =  10 

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 

K +  2 S = 6 

 2K + 3 S  =  11 

We’ve drawn the feasible region 

below.  In the first case, there is a 

constraint 2K + 3S = 10.  The optimal 

solution is at (2, 2). In the second 

case, we increased the RHS of this 

constraint to 11, and kept all other 

data constant.  Notice that the 

feasible region got bigger.  The new 

optimal solution is now at (4, 1). 

Maximize 30K + 50S 
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K +  2 S = 6 

 2K + 3 S  =  10 
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K +  2 S = 6 

 2K + 3 S  =  11 

Before going any further about 

shadow prices or their interpretation, 

let’s focus on the optimum solution.  

In the original problem, the optimum 

solution was at the intersection of the 

red and blue lines.  When we increase 

the gathering time to 11, the optimum 

solution is still at the intersection of 

the red and blue lines. 

And if we had increased the 

amount of gathering time to 

a value between 10 and 11, 

the optimum solution will still 

be at the intersection of the 

red and blue lines.  Next, 

we’ll compute the optimum 

solution for any RHS. 
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1 

2 

3 

4 

5 

K 

S 

K +  2 S = 6 

 2K + 3 S  =  10 + Δ 

Suppose that the amount of 

gathering time is changed to 10 + 

Δ, where 0 ≤ Δ ≤ 1.  The blue line 

becomes  2K + 3 S  =  10 + Δ.  

The red line is K + 2S = 6.  The 

intersection of the two lines 

(expressed as a function of Δ) is 

K = 2 + 2Δ;  S = 2 – Δ. The 

objective value is  30K + 50S = 

160 + 10Δ. 

 

  

Cathy does 

those 

calculations in 

her head.  

Wow! 

Here is a key point.  So long as  

0 ≤ Δ ≤ 1, the optimal solution 

will be K = 2 + 2Δ;  S = 2 – Δ, 

and the optimum objective 

value will be 160 + 10Δ.  If we 

let Δ = .6, then the objective 

value is 166.  Thus, the 

increase in the optimum 

objective value is 6 = .6 times 

the  price.  Thus the increase in 

optimal objective value is 

proportional to the increase in 

RHS. Δ, 
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1 

2 

3 
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S 

K +  2 S = 6 

 2K + 3 S  =  10 + Δ 

This is worth repeating. The 

optimal solution is K = 2 + 2Δ;  S 

= 2 – Δ.  The objective value is  

30K + 50S = 160 + 10Δ.   

 

I said before that this solution is 

optimal so long as 0 ≤ Δ ≤ 1.  

Actually, it is optimal so long as -

1 ≤ Δ ≤ 1, which is exactly the 

same range as where the 

solution is feasible. 

 

  

If  Δ < -1, then K = 2 + 2 Δ  < 0, 

which is infeasible.  If  Δ  > 1, 

then K = 2 + 2 Δ  > 4, which 

violates the constraint “K ≤ 4.”  

For all values in between, the 

solution is optimal, and the 

objective value is z(Δ) = 160 + 

10Δ.   

Δ, 

Before we said that 

the shadow price is 

the change in z if we 

increase the RHS by 

1, which is 10 in this 

case.  You can see 

that the shadow price 

is also the derivative 

of the optimal value 

function z(Δ).  



14 

We have illustrated shadow prices on 

one example with two variables.  But 

what we have said is true for any linear 

program. 

 

Suppose that the right hand side of 

some constraint (say constraint C) is 

increased by Δ, and all other data is 

unchanged.  Then the optimal solution 

will be a linear function of Δ.  And the 

optimal objective value z(Δ) will also be 

a linear function of Δ. 

 

  

The shadow price of constraint C will be  

z(1) - z(0), which is also the derivative of 

 z(Δ) at Δ = 0 (assuming that the derivative 

exists). 

 

And the shadow price will be valid for all  

Δ such that the solution is feasible. 

 

  

In your example, the 

solution was the 

intersection of the red 

and blue lines.  But 

what are you talking 

about for other linear 

programs? 

 

  

Great question, Tom. 
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In two dimensional examples (that is, 

when there are two variables), the 

optimal solution can be described as 

the intersection of two lines.  As Δ is 

increased or decreased from 0, the 

optimal solution is still the 

intersection of these two lines; 

however, now the solution will be a 

linear function of Δ. 

  

But you still haven’t 

answered my question.  

What happens if there are 

three or more variables? 

Tom, I’ll answer that 

question when we 

return to the subject 

of sensitivity 

analysis after 

showing how to 

solve linear 

programs with 3 or 

more variables.  For 

now, I ask you to 

have some patience 

and trust. 

  

We turkeys are very 

trusting and patient.  
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This is a good 

time to try it on 

your own.  Can 

you determine 

the shadow 

price of the 

second 

constraint? 

I’ll get you started.  

Consider what happens 

when the second 

constraint becomes “K + 

2S = 6 + Δ”.  Then find the 

solution to the equations “ 

“2K + 3S = 10” 

“  K + 2S =  6 + Δ”, 

and express the solution 

as a function of Δ.  Also 

compute the optimal 

objective value z(Δ).  

I’ll give you a hint. 

 

The shadow price  

is 10. 

Nooz, that 

isn’t a hint.  

That’s the 

answer. 

But I really want 

students to see 

how to do the 

work.  By giving 

them the 

answer, they 

can verify that 

they did it 

correctly. 
That’s 

pretty foxy. 
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The interval in which the 

shadow price is valid is 

the interval in which the 

solution is feasible.   In 

this case, the shadow 

price is not valid if Δ = 1. 

Recall that I first defined the shadow price 

of a constraint to be the change in the 

optimal objective function if the RHS of the 

constraint is increased by 1.  Now you can 

see why that wasn’t quite precise.  This 

definition is valid so long as the interval in 

which the shadow price is valid contains 

“1”.   But the definition is close enough to 

the truth that it was worth stating. 
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I’m beginning to 

understand.  But I still 

don’t get why we are 

doing this.  If I want to 

find out what happens if 

we change part of the 

data, it is really easy to 

solve a second linear 

program.   

Tom, I’ll answer that question 

when we return to the subject of 

sensitivity analysis after showing 

how to solve linear programs with 

3 or more variables.  For now, I 

ask you to have some patience 

and trust. 

I just got a 

feeling of déjà 

vu.    

 

OK.  I’ll try to be 

patient. 
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Summary for changes in RHS coefficients 
• Determine the binding constraints, that is, the constraints that hold with equality. 

• Determine the change in the “corner point solution” as a function of Δ. 

• Compute the largest and smallest values of Δ so that the solution stays feasible. 

• The shadow price is valid so long as the “corner point solution” remains optimal, 
which is so long as it is feasible. 

• If there are three binding constraints, then choose two of these to get the two 
equations to solve, and the technique still works.  (But the shadow prices and 
ranges depends on which two constraints are chosen.) 

And here is a shortcut.  Determine the 

binding constraints, and determine the 

solution to the constraints if the RHS is 

increased by 1.  (Don’t worry about 

feasibility).  The shadow price is the increase 

in the objective value. 
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We are going to cover one other type of 

sensitivity analysis in this tutorial.  What is the 

effect on the optimum objective function of 

changing the cost coefficient of one of the 

variables?  

Remember that the optimal solution 

occurs at a corner point.  In this case, 

the optimum solution was (2, 2), 

which was the intersection of the red 

and green line.  What do you think 

will be the new optimal solution if the 

revenue from shields changes just a 

little bit? 
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If you answered 

that the optimal 

solution changes 

just a little bit, you 

are nearly right. 

Ella is being tactful.  

Actually, that 

answer would be 

wrong. 

If you answered that the 

optimal solution will not 

change, then you are 

completely right.   

But this raises another 

question.  How much can 

you change the cost 

coefficient so that the 

optimum solution stays the 

same? 
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More on Cost Sensitivity Analysis 
Suppose the objective function is changed to  
             z = 30 K  +  51 S 

  

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 

2 K + 3 S =  10 

K + 2 S   =  6 

If the same solution   K = 2, S = 2, stays optimal, then the optimal 
objective value increases from 160 to 162.    (Note that the increase is the 
optimal value for S).          

If the cost coefficient of S is 
increased by Δ, then the 
revised objective function is    
             z = 30 K  +  (50 + Δ) S 

Assuming that the current 
optimal solution stays 
optimal, then the objective 
increases to     
             z = 160 + 2Δ 

The key issue is the following:  how large and small can Δ be 
so that the optimal solution remains optimal? 
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Determining Bounds on Cost Coefficients 
Suppose the objective function is changed to  
             z = 30 K  +  (50 + Δ) S 

As Δ increases or decreases,  the slope of the objective line changes.  
Currently the optimum  solution is at the corner point (2, 2).  If the slope 
of the objective function changes enough, then the optimum solution 
will become an adjacent corner point, either (0, 3) or (4, 1). 

  

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 

2 K + 3 S =  10 

K + 2 S   =  6 

To figure out the answer, 

remember the geometric method 

for solving a 2-variable LP.  One 

shifts the isoprofit line until it 

reaches the maximum level that 

touches the feasible region. 
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Determining Bounds on Cost Coefficients 
If Δ = -5, the objective is parallel to 2 K + 3 S =  10 

So (2, 2) remains optimal if -5 ≤ Δ ≤ 10.  

  

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 

2 K + 3 S =  10 

K + 2 S   =  6 

If Δ = 10, the objective is parallel 

to ”K + 2 S   =  6”. When Δ = 10, 

then, every point on the line 

segment from (0,3) to (2, 2) is 

optimal. 
  

Suppose the objective function is changed to  

             z = 30 K  +  (50 + Δ) S 

If Δ = 0, the optimal solution is (2, 2).  This 

solution stays optimal for small positive Δ so 

long as Δ < 10.  
  

When Δ = 10, the isoprofit line is  

30K + 60S = 180.  This is the 

same line as K + 2S = 6.  
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Determining Bounds on Cost Coefficients 
If Δ = -5, the objective is parallel to 2 K + 3 S =  10 

So (2, 2) remains optimal if -5 ≤ Δ ≤ 10.  

  

1 2 3 4 5 6 

1 

2 

3 

4 

5 

K 

S 

2 K + 3 S =  10 

K + 2 S   =  6 

When Δ = -5, the isoprofit line is  

30 K + 45 S = 150.   

This is the same line as  

2K + 3S = 10.  

We still assume that the objective function is  

             z = 30 K  +  (50 + Δ) S. 

If Δ is between 0 and  -5, the optimal solution 

is (2, 2). If Δ = -5, then, every point on the line 

segment from (2, 2) to (4, 1) is optimal. 
  

As Δ changes from -∞ to ∞, each 

of the five corner points will be 

optimal within a segment. 
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Summary for Changes in the Cost Coefficients 
Suppose that we want to modify the cost coefficient for a variable xj.  We 

want to increase it from cj to cj + Δ. 

• Determine the binding constraints and the current corner point 
solution, say x*. 

• Compute the largest and smallest values of Δ so that the x* remains 
optimal.  In two dimensions, this will occur when the revised objective 
function is parallel to one of the constraints. 

 

I really like 2 variable LPs!  They are my 

favorite LPs, except possibly for LPs with only 

one variable. 
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Last Slide 

By the way, 2-D LPs are 

not so important in and of 

themselves.  But by 

knowing how to do 

sensitivity analysis in 2-D, 

it’s easier to understand 

what happens with 

problems with more 

variables. 

That concludes this tutorial 

of sensitivity analysis for 

Linear Programming in two 

dimensions.  

I hope it was helpful.  So 

long! 
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