Ford Motor Company's Finished Vehicle Distribution System April 2001

Ellen Ewing Project Director UPS Logistics

Dr. John Vande Vate Exec. Director EMIL ISyE Georgia Tech

Agenda

- Introduction
- 1999 Environment
- Solution Approach
- Network Design
- Implement New Strategy
- Results to Date
- Summary

Objectives/Motivation

- Role of modeling
- Information in variables
- Stronger formulation
- Financial impact

The Need for Speed

Financial Incentives: Capital Utilization

– In 1996

- Ford produced 3.9 million vehicles in the US
- Avg. transit time 15+ days
- Avg. vehicle revenue \$18,000
- Value of pipeline inventory: > \$2.8 Billion
- One day reduced transit time:
 - » \$190 Million reduction in pipeline inv.
 - » 1,400 fewer railcars

The Need for Speed

Demand for land

- 22 Plants
- 54 Destination Ramps
- ~1,200 Load lanes
- ~8,400 vehicles waiting at plants
- \$166 Million in inventory

The Need for Speed

Other Incentives

- Damage
- Flexibility
- Others?

The Price

- Inventory at the cross dock
- Added distance traveled
- Handling at the cross dock
- Capital costs of the cross dock

1999 Vehicle Network Delivery Conditions

- Record production levels
- Demand shift from cars to trucks
- Overburdened rail infrastructure
- Deteriorating rail service
- Shortage of transport capacity
- Mixing centers
- 15+ day transit time
- High inventory cost
- Dissatisfied customers

High 1999 Level Statistics

 Assembly plants 	22
 Mixing centers 	5
 Destination rail ramps 	54
 Dealer locations 	6,000
 Production volume Mil./Year 	4.4
 Freight expense 	\$1.5 Bil.
 Dec. '99 avg. transit time 	16.8 Days
 Pipeline Inventory 	\$4.1 Bil.

Ford Distribution Network

Old Delivery Design

- Push Network
- Vendor sub systems optimized for individual segments
- Little to no visibility
- Mixing Centers not used effectively

Ford Goals

Speed

- 1999: Average 15 days transit time
- Goal: Maximum of 8 days transit time

Precision

- 1998/1999: 37% on time within 1 week
- Goal: 95% on time within 1 day

Visibility

- 100 % Internet vehicle tracking from plant release to dealer delivery
- Guide the flow of vehicles
- Respond to variations
- Inform customers

Design Process

Truck vs Rail delivery

Allocate Dealers (FIPS) to Ramps

Route Flows through Rail Network **Single-Sourcing Allocation**

Var Assign{FIPS, RAMPS} binary; Minimize TotalCost:

sum{fip in FIPS,ramp in RAMPS}
Cost[fip,ramp]*Assign[fip,ramp];

- s.t. SingleSource{fip in FIPS}: sum{ramp in RAMPS}Assign[fip,ramp] = 1;
- s.t. ObserveCapacity{ramp in RAMPS}: sum{fip in FIPS} Volume[fip]*Assign[fip,ramp]
- <= Capacity[ramp];

Old Ramp Allocation Southern US

Dealers sourced by multiple ramps

<u>Maximum</u>	<u>Count</u>
500	1039
5,000	504
50,000	128
75,000	1
130,000	2

New Ramp Allocation Southern US

Dealers sourced by single ramps

<u>Maximum</u>	<u>Count</u>
500	2085
5,000	952
50,000	174
75,000	3
130,000	2

New Allocation of Dealers to Ramps Mainland US

<u>Maximum</u>	<u>Count</u>
500	2085
5,000	952
50,000	174
75,000	3
130,000	2

Flows through the Rail Network

Objective is NOT Freight cost!

The Objective IS

Speed

Capital

Land

The Promise

Speed

Unit trains bypass hump yards

The Promise

Capital & Land

- 22 Plants
- 54 Destination Ramps
- ~1,200 Load lanes
- ~8,400 vehicles waiting at plants
- \$166 Million in inventory
- **Each Plant to One Mixing Center**
- ~22 Load lanes
- ~154 vehicles waiting at plants
- ~\$3 Million in inventory

The Price

- Inventory at the cross dock
- Handling at the cross dock
- Capital costs of the cross dock
- Added distance traveled

Making the Trade-offs

Measuring Inventory In the rail network At the plants and Cross Docks Load-driven system Railcars depart when full **Relationship between Network Design and Inventory**

Inventory at the Plants

Half a rail car full for each destination

Time

Inventory at the Mixing Centers

Half a rail car full for each destination

Time

Workload at the Mixing Centers

Unpredictable

Rail car holds 5 vehicles

Workload at the Mixing Centers

Balanced: Only load cars you empty

Rail car holds 5 vehicles

Workload at the Mixing Centers

Balanced: Only load cars you empty

Rail car holds 5 vehicles

Effect on Inventory

Inventory at Mixing Center slowly grows to just over (ramps -1)(capacity -1) and remains there Roughly twice the inventory of before Still depends on the number of ramps the

cross dock serves

Consolidation for Speed

Unit Trains of 15-20 rail cars don't stop at mixing yards Trade moving inventory for stationary inventory

Paths

Route from Plant to Ramp Mode used on each edge

Demand[ramp, plant] Combined demand at ramp for all products from the plant

Variables:

PathFlow[path]:

 Volume from the plant to the ramp on the path

UseLane[fromloc, toloc, mode] binary

Did we use the mode between two locations

Objective

Minimize the number of vehicles in the pipeline Moving Component (Transit times) Waiting Component (Mode Size)

Minimize PipelineInventory:

sum{path in Paths} (Total Transit Time)*PathFlow[path]; sum{(f,t,m)} (Size[m]/2)*UseLane[f,t,m]

Satisfy Demand

The sum of flows on all paths between a plant and a ramp must meet demand

s.t. SatisfyDemand[p in PLANTS, r in RAMPS]: sum{path in PATHS: Plant[path]=p and Ramp[path] = r} PathFlow[path] >= Demand[p,r];

Define UseLane For each pair of locations and mode between them write a constraint for each plant and ramp s.t. DefineUseLane[p in PLANTS, r in RAMPS, (f,t,m) in EDGES}: sum{path in PATHS: Plant[path]=p and Ramp[path] = r and (f,t,m) in PATHEDGES[path]} PathFlow[path] <= Demand[p,r]*UseLane[f,t,m];

Large Model Lots of Variables: Many Paths Lots of Constraints: DefineUseLane

The LP relaxation is nearly always integral

New Rail Lanes

Reduced plant destinations

Results

- Cut vehicle transit time by 26% or 4 days
- \$1 billion savings in vehicle inventory
- \$125 million savings in inventory carrying costs
- Avoid bottlenecks
- Reduce assets in supply chain
- Improved inventory turns at dealer

Benefits

- Ford
- Dealers
- Rail Carriers
- Auto Haulers

Benefits - Ford

- On-time delivery
- Competitive edge
- Cost control

Benefits - Dealers

- Reduced inventories
- Increased customer satisfaction

Benefits - Rail Carriers

- Improved equipment utilization (reduced capital expenditures)
- Visibility and planning capabilities
- Synergies with existing UPS traffic
- Increased cooperation

Benefits - Auto Haulers

- Expanded dealer delivery hours
- Visibility and planning capability
- Improved asset utilization
- Increased cooperation