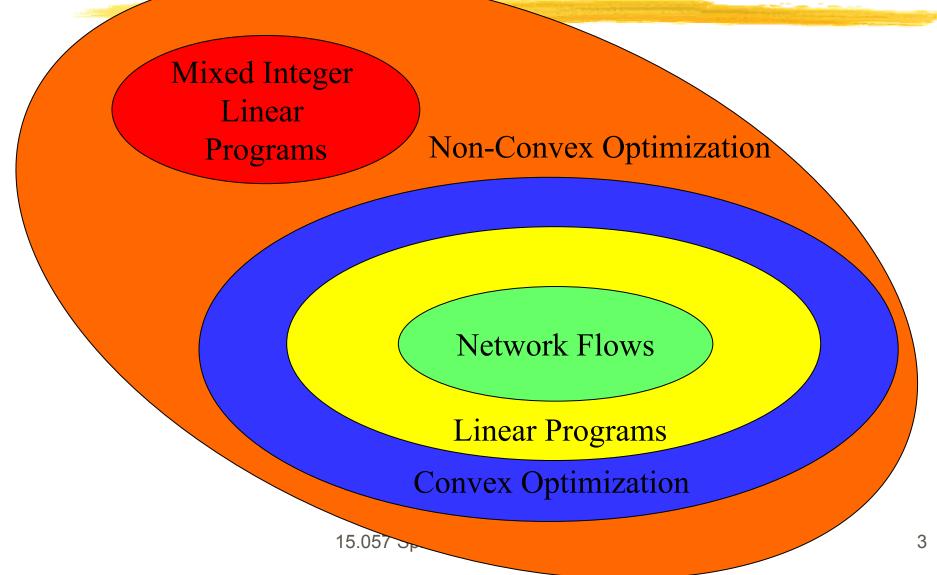
Linear Programming

Hierarchy of Models Define Linear Models Modeling Examples in Excel and AMPL

15.057 Spring 03 Vande Vate

Hierarchy of Models



Linear Programs

Mixed Integer Linear Programs

15.057 Spring 03 Vande Vate

A More Academic View

The Differences

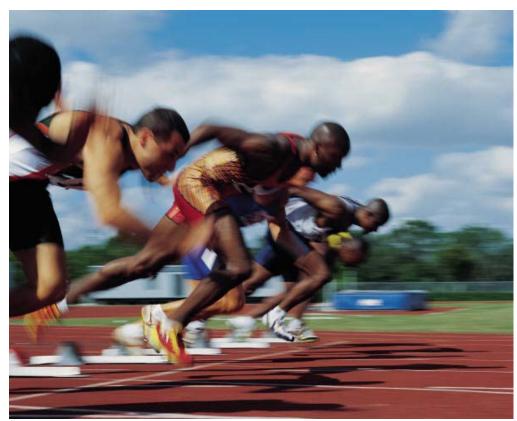
	Objective		
	Objective		
	Function	Variables	Constraints
			Special
Network Flows	Linear	Continuous	Linear Forms
Linear Programs	Linear	Continuous	Linear Forms
Convex			
Optimization	Convex	Continuous	Convex
Mixed Integer		Discete or	
Linear Programs	Linear	Continuous	Linear Forms
Non-linear			
Optimization	General	Continuous	General

Our Focus:

- Linear Programs (LP),
- Mixed Integer Linear Programs (MIP)
- Heuristics

Agenda for LP

- First Example
- What is Linear?
- Several Illustrative Examples
 - Excel and AMPL
- Revenue Optimization Application
- Portfolio Optimization


A First Example

Simplified Oak Products Model

Chair Style	Capta	in	Mate	•				
Profit/Chair	\$	56	\$	40	Profit			
Poduction Qty.		0		0		0		
	Ch	air Cor	nponent		Total Usage	e	Start Inventory	End Inv.
Long Dowels	8		4			<u>0</u> ≤	1280	1280
Short Dowels	4		12			0 <i>≤</i>	1600	1600
Legs	4		4			0 <	760	760
Heavy Seats	1		0			0 <	140	140
Light Seats	0		1			0 <	120	120
					Chairs		Min. Production	Slack
Chair Production	1		1	-		0 ≥	100	-100

Build a Solver Model

15.057 Spring 03 Vande Vate

A First Example

Simplified Oak Products Model

Chair Style	Capta	in	Mate	•				
Profit/Chair	\$	56	\$	40	Profit			
Poduction Qty.		0		0		0		
	Ch	air Cor	nponent		Total Usage	e	Start Inventory	End Inv.
Long Dowels	8		4			<u>0</u> ≤	1280	1280
Short Dowels	4		12			0 <i>≤</i>	1600	1600
Legs	4		4			0 <	760	760
Heavy Seats	1		0			0 <	140	140
Light Seats	0		1			0 <	120	120
					Chairs		Min. Production	Slack
Chair Production	1		1	-		0 ≥	100	-100

The Model

■ Objective: Maximize Profit

- SUMPRODUCT(UnitProfit,Production)
- =\$56*Production of Captains + \$40*Production of Mates
- ■Variables: Production
 - ▶\$B\$4:\$C\$4
 - Production of Captains
 - Production of Mates

Constraints

Constraints:

- TotalUsage <= StartInventory</p>
 - SUMPRODUCT(LongDowelsPerChair, Production) <= 1280</p>
 - SUMPRODUCT(ShortDowelsPerChair, Production) <= 1600</p>

• . . .

- TotalProduction >= MinProduction
 - =SUM(Production) >= 100

Options

- Assume Non-negative
- Assume Linear Model

What's a Linear Model

What is a linear function?

- Sum of known constants * variables
- NOTHING ELSE IS LINEAR
- Examples:
 - Sum across a row of variables
 - Sum down a column of variables
 - \$56*Production of Captains + \$40*Production of Mates

In Excel

SUMPRODUCT(CONSTANTS, VARIABLES)

In AMPL

- sum {index in Index Set}parameter[index]*variable[index]
- Index Set cannot depend on values of variables 15.057 Spring 03 Vande Vate

A Test

- Variables: x and y
- Which are linear?
 - ► x² + y²
 - $(1-sqrt(2))^2 x + y/200$
 - ▶ |x y|
 - ► x*y
 - ► 10/x
 - ▶ x/10 + y/20
 - \blacktriangleright sqrt(x² + y²)

Linear Programs

- Objective:
 - A linear function of the variables
- Variables:
 - May be restricted to lie between a lower bound and an upper bound

<

- ▶ In AMPL
 - var x >= 1, <= 200;

Constraints:

Linear Function of the variables \geq Constant

Why These Limitations!

Can anything real be expressed with such limited tools?

■ What do we get for all the effort?

15.057 Spring 03 Vande Vate

Power of Expression

The Marketing Hype: LOTS You will be amazed... Call before midnight tonight and get...

Experience:

Most of Almost EverythingAll of Almost Nothing

My Own Perspective

Linear Programming

- Large portions of most real applications
- Basis for understanding
- Background for MIP (Mixed Integer Programming)
 - Everything can be modeled with MIP, but...

What do we get for playing?

Guarantees!

Readily available algorithms that

- Find a provably best solution
- Quite fast even for large problems
- Less compelling generally
 - Sensitivity Analysis (not available with MIP)

Review of Sensitivity

	Simplifi	ed Oak P	roducts l	Mode	el l		
Chair Style	Cap	tain	Mate				
Profit/Chair	\$	56 \$		40	Profit		
Poduction Qty.		0		0	0		
	С	hair Comp	onent		Total Usage	Start Inventory	End Inv.
Long Dowels	8		4		0 ≤	1280	1280
Short Dowels	4		12		0 <u><</u>	1600	1600
Legs	4		4		0 <	760	760
Heavy Seats	1		0		0 <	140	140
Light Seats	0		1		0 <i>≤</i>	120	120
					Chairs	Min. Production	Slack
Chair Production	1		1	-	0 ≥	100	-100

Review of Sensitivity Analysis

Microsoft Excel 8.0a Sensitivity Report Worksheet: [07OakProductsLP.xIs]Sheet1 Report Created: 12/19/01 4:52:52 PM

If the unit profit on the Mate were to drop, how much could it drop before we would quit making it?

Adjustable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$4	Poduction Qty. Captain	130	0	56	24	16
\$C\$4	Poduction Qty. Mate	60	0	40	16	12

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$6	Long Dowels Total Usage	1280	4	1280	40	180
\$D\$7	Short Dowels Total Usage	1240	0	1600	1E+30	360
\$D\$8	Legs Total Usage	760	6	760	72	40
\$D\$9	Heavy Seats Total Usage	130	0	140	1E+30	10
\$D\$10	Light Seats Total Usage	60	0	120	1E+30	60
\$D\$12	TotalProduction	190	0	100	90	1E+30

More Examples

Illustrate "tricks"
 Build experience
 AMPL Examples

Blending Example

Eastern Steel Blending Example (Described in Moore et al. Page 105 and following)

		Mir	nes					
	1	2		3	4			
Tons of Ore/Ton of Alloy								
Cost/Ton	\$ 800	\$ 400	\$6	00 \$	500			
	Lbs of e	each basic (element	/Ton c	of Ore			
						Lbs/Ton		Min. Lbs/Ton
Basic Elen	nent					of Alloy		of Alloy
А	10	3		8	2	0	\geq	5
В	90	150		75	175	0	\geq	100
С	45	25		20	37	0	≥	30

Build a Solver model

15.057 Spring 03 Vande Vate

Blending Example

Eastern Steel Blending Example (Described in Moore et al. Page 105 and following)

		Mir	nes					
	1	2		3	4			
Tons of Ore/Ton of Alloy								
Cost/Ton	\$ 800	\$ 400	\$6	00 \$	500			
	Lbs of e	each basic (element	/Ton c	of Ore			
						Lbs/Ton		Min. Lbs/Ton
Basic Elen	nent					of Alloy		of Alloy
А	10	3		8	2	0	\geq	5
В	90	150		75	175	0	\geq	100
С	45	25		20	37	0	≥	30

AMPL Model

set MINES; set ELEMENTS;

param MinLbs{ELEMENTS};
param CostPerTon{MINES};
param LbsPerTon{MINES, ELEMENTS};

var Tons{MINES} >= 0;

minimize TotalCost:

sum{mine in MINES} CostPerTon[mine]*Tons[mine];

- s.t. CompositionConsts {elem in ELEMENTS}:
 sum{mine in MINES} LbsPerTon[mine, elem]*Tons[mine]
- >= MinLbs[elem];

s.t. TotalWeight: sum{mine in MINES} Tons[mine] = 1;

A Fixed Income Example

Investment Example

Bond	А	В	С	D	Е
Yield Quality Years to Maturity	4.30% 2 9	2.70% 2 15	2.50% 1 4	2.20% 1 3	4.50% 5 2
Maximize Yield Conditions:					
at most		nillion to inv	est in C, D, and	1 ⊑	
at most		verage qual			
at most	5 y	ears averag	e years to	maturity	

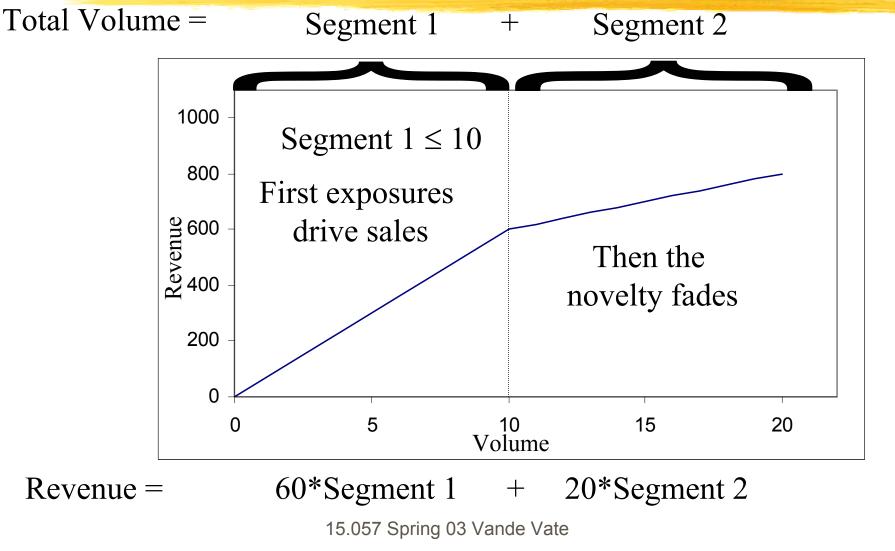
Build a linear model

15.057 Spring 03 Vande Vate

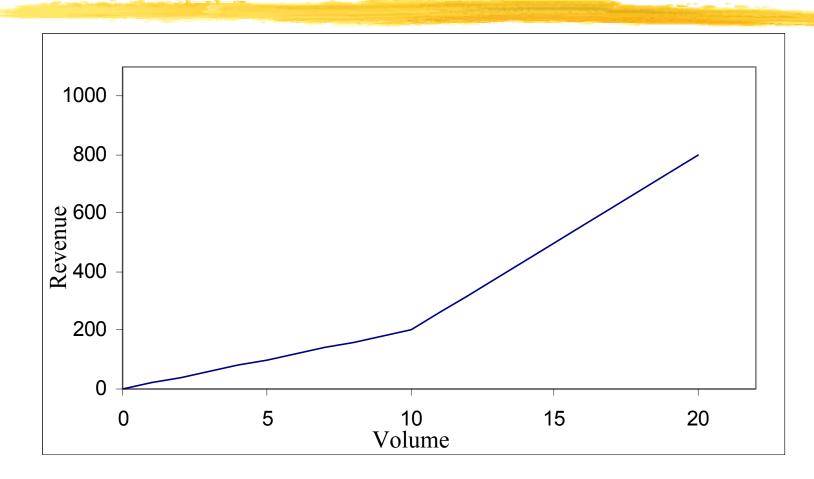
A Fixed Income Example

Investment Example

Bond	А	В	С	D	Е
Yield Quality Years to Maturity	4.30% 2 9	2.70% 2 15	2.50% 1 4	2.20% 1 3	4.50% 5 2
Maximize Yield Conditions:					
at most		nillion to inv		4 L	
at most at most		verage qual	in C, D, and lity		
at most		•	ge years to	maturity	


Diseconomies of Scale

If we are minimizing costUnit cost increases with volume


If we are maximizing profitUnit profit decreases with volume

Inherent incentive towards small volumes

Example: Marketing

What about....

A Financial Application

- Financial Analysis
 - Define goals
 - Assess Risk vs. Return
- Asset Allocation
 - Allocate assets among classes of investments
 - Track and forecast market swings
- Fund Selection
 - No-Load Funds
 - Established Performance

Asset Allocation

Asset Classes

- ➤Treasury Bills
- Small Value Funds
- Large Growth Funds
- Asset Allocation

- ≻ Europe
- Emerging Markets
- > HighYield

Each Investor has target for each asset class

Fund Selection

Screen Funds

- Rank in each Class for each Fund
 - Fidelity Equity Income II
 - LV LG SV JA EU GV HY
 - >66 4 16 2 1 6 5
 - Roughly speaking, the rank is the % of each funds investments that is in the asset class, e.g., Fidelity Equity Income II has 4% of its assets in Large Growth.

Select Funds that meet the target allocation

- Minimize the total "deviation" from the targets
- Deviation is |Actual Target|

Example Data

Fund Name	T-Bill	Large Value	Large Growth	Small Value	Small Growth	Japan	Pacific	Europe	Emerging Markets	Government	High Yield	International Bonds	Gold
Fidelity Adv Equity	7	71	2	6	7	2	0	0	5	0	0	0	0
Fidelity Advisor Gro	0	48	5	26	7	0	0	11	2	0	0	0	0
Fidelity Equity-Income	0	60	5	20	0	3	0	0	3	0	9	0	0
Fidelity Equity Income-II	0	66	4	16	0	2	1	0	6	0	5	0	0
Fidelity Growth/Income	2	47	0	17	11	3	0	5	2	0	12	0	0
Fidelity Ins Cash Po	100	0	0	0	0	0	0	0	0	0	0	0	0
Fidelity Investment	0	0	0	2	0	0	0	0	4	92	1	0	1
Fidelity Intermediat	13	0	0	0	0	0	0	0	0	83	0	3	0
Fidelity Limited Ter	5	18	0	0	0	0	4	0	0	45	28	0	0
Fidelity Mortgage Se	53	0	0	0	0	2	1	3	0	34		0	0
Fidelity Retirement	0	8	35	24	16	1	0	3	11	0	0	0	0
Fidelity Short-Term	44	0	0	0	0	0	0	0	6	25	23	3	0
Fidelity Value Fund	0	50	5	31	1	4	0	8	2	0	0	0	0
Fidelity Worldwide F	0	27	0	14	0	11	0	37	11	0	0	0	0
Targets	43	3	3	5	4	10	2	5	10	15	0	0	0

Fund Ratings

Example

■ If we allocate 50% to the two funds...

	Fidelity	Fidelity	Implied Allocation	Target	
Asset Classes	Adv Equity	Advisor Gro	to Asset Classes	Allocation	Deviation
T-Bill	7	0	3.5	43	39.5
Large Value	71	48	59.5	3	56.5
Large Growth	2	5	3.5	3	0.5
Small Value	6	26	16	5	11
Small Growth	7	7	7	4	3
Japan	2	0	1	10	9
Pacific	0	0	0	2	2
Europe	0	11	5.5	5	0.5
Emerging Markets	5	2	3.5	10	6.5
Government	0	0	0	15	15
High Yield	0	0	0	0	0
International Bonds	0	0	0	0	0
Gold	0	0	0	0	0
	50%	50%		Total	143.5

Challenge #2

- Build a <u>linear</u> model to find a best portfolio.
- First build your model in Excel (Use the file Portfolio.xls)
- Then build your model in AMPL (Use the file Portfolio.mdb)
- Deliverables
 - Models (Self documenting)
 - Solutions (Self documenting)
- Due: Beginning of Lecture #7