Non-Linear Optimization

Distinguishing Features
 Common Examples
 EOQ

Balancing Risks Minimizing Risk

Hierarchy of Models

A More Academic View

A More Academic View

Convexity

The Distinguishing Feature Separates Hard from Easy

■ Convex Combination

- Weighted Average
- Non-negative weights
- Weights sum to 1

Convex Functions

Convex Function
The
function
lies
below
the line

What's "Easy"

$■$ Find the minimum of a Convex Function

■ A local minimum is a global minimum

Convex Set

■ A set S is CONVEX if every convex combination of points in S is also in S

- The set of points above a convex function

15.057 Spring 03 Vande Vate

What's "Easy"

- Find the minimum of a Convex Function over (subject to) a Convex Set

Concave Function

What's "Easy"

■ Find the maximum of a Concave Function over (subject to) a Convex Set.

Academic Questions

■ Is a linear function convex or concave?
■ Do the feasible solutions of a linear program form a convex set?
■ Do the feasible solutions of an integer program form a convex set?

Ugly - Hard

Integer Programming is "Hard"

15.057 Spring 03 Vande Vate

Review

■ Convex Optimization
-Convex (min) or Concave (max) objective
-Convex feasible region
■ Non-Convex Optimization

■ Stochastic Optimization
-Incorporates Randomness

Agenda

■ Convex Optimization

- Unconstrained Optimization
-Constrained Optimization
■ Non-Convex Optimization
-Convexification
-Heuristics

Convex Optimization

■ Unconstrained Optimization
-If the partial derivatives exist (smooth)

- find a point where the gradient is 0

-Otherwise (not smooth)
- find point where 0 is a subgradient

Unconstrained Convex Optimization

- Smooth
-Find a point where the Gradient is 0
-Find a solution to $\nabla f(x)=0$
- Analytically (when possible)
- Iteratively otherwise

Solving $\nabla \mathbf{f}(\mathbf{x})=\mathbf{0}$

- Newton's Method
-Approximate using gradient
$-\nabla f(y) \approx \nabla f(x)+1 / 2(y-x)^{t} H_{x}(y-x)$
-Computing next iterate involves inverting H_{x}
■ Quasi-Newton Methods
- Approximate H and update the approximation so we can easily update the inverse
-(BFGS) Broyden, Fletcher, Goldfarb, Shanno

Line Search

■ Newton/Quasi-Newton Methods yield direction to next iterate

- 1-dimensional search in this direction

■ Several methods

Unconstrained Convex Optimization

■ Non-smooth
-Subgradient Optimization
-Find a point where 0 is a subgradient

What's a Subgradient

■ Like a gradient
$-f(y) \geq f(x)+\gamma_{x}(y-x)$
$f(y)=f(x)-2(y-x)$
$f(x)$ is a minimum point

$$
f(y)=f(x)+(y-x)
$$

If 0 is a subgradient if and entyif...

Steepest Descent

■ If 0 is not a subgradient at x, subgradient indicates where to go
\rightarrow Direction of steepest descent
\square Find the best point in that direction
-line search

Examples

■ EOQ Model ■ Balancing Risk ■ Minimizing Risk

EOQ

■ How large should each order be
■ Trade-off
-Cost of Inventory (known)
-Cost of transactions (what?)

- Larger orders
-Higher Inventory Cost
- Lower Ordering Costs

The Idea

■ Increase the order size until the incremental cost of holding the last item equals the incremental savings in ordering costs
■ If the costs exceed the savings?
■ If the savings exceed the costs?

Modeling Costs

■ Q is the order quantity

- Average inventory level is
- Q/2

■ h^{*} c is the Inv. Cost. in \$/unit/year

- Total Inventory Cost
- $h^{*} c^{*}$ Q/2
- Last item contributes what to inventory cost?
- $\mathrm{h}^{*} \mathrm{c} / 2$

Modeling Costs

$\square D$ is the annual demand
■ How many orders do we place?
-D/Q

- Transaction cost is A per transaction
- Total Transaction Cost
-AD/Q

Total Cost

- Total Cost = h*cQ/2 + AD/Q
 Total Cost

Incremental Savings

■ What does the last item save?

- Savings of Last Item
-AD/(Q-1) - AD/Q
- [ADQ - AD(Q-1)]/[Q(Q-1)] ~ AD/Q ${ }^{2}$

■ Order up to the point that extra carrying costs match incremental savings

- $h^{*} \mathrm{c} / 2=A D / Q^{2}$
$-\mathrm{Q}^{2}=2 \mathrm{AD} /\left(\mathrm{h}^{*} \mathrm{c}\right)$
$-\mathrm{Q}=\sqrt{2 \mathrm{AD} /\left(h^{*} \mathrm{c}\right)}$

Key Assumptions?

■ Known constant rate of demand

Value?

■ No one can agree on the ordering cost ■ Each value of the ordering cost implies

- A value of Q from which we get
- An inventory investment c*Q/2
- A number of orders per year: D/Q
\square Trace the balance for each value of ordering costs

The EOQ Trade off

- Known values
-Annual Demand D
- Product value c
- Inventory carrying percentage h

■ Unknown transaction cost A

- For each value of A
- Calculate $\mathrm{Q}=\sqrt{2 \mathrm{AD} /\left(\mathrm{h}^{*} \mathrm{c}\right)}$
- Calculate Inventory Investment cQ/2
- Calculate Annual Orders D/Q

The Tradeoff Benchmark

Balancing Risks

Variability

- Some events are innerentiy variable
- When customers arrive
- How many customers arrive
- Transit times
- Daily usage
- Stock Prices
- Hard to predict exactly
- Dice
- Lotteries

Random Variables

■ Examples

- Outcome of rolling a dice
-Closing Stock price
-Daily usage
-Time between customer arrivals
-Transit time
-Seasonal Demand

Distribution

- The values of a random variable and their frequencies
■ Example: Rolling 2 Fair Die

						34					
					33	43	44				
				32	42	52	53	54			
			22	23	24	25	35	45	55		
		21	31	41	51	61	62	63	64	65	
	11	12	13	14	15	16	26	36	46	56	66
Number of Outcomes	1	2	3	4	5	6	5	4	3	2	1
Fraction of Outcomes	0.028	0.056	0.083	0.111	0.139	0.167	0.139	0.111	0.083	0.056	0.028
Value	2	3	4	5	6	7	8	9	10	11	12

Theoretical vs Empirical

■ Empirical Distribution
 -Based on observations

Value	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Number of Outcomes	1	$\mathbf{2}$	1	5	$\mathbf{3}$	9	8	3	3	1	-
Fraction of Outcomes	0.03	0.06	0.03	0.14	0.08	0.25	0.22	0.08	0.08	0.03	-

■ Theoretical Distribution
-Based on a model

Value	2	3	4	5	6	7	8	9	10	11	12
Fraction of Outcomes	0.03	0.06	0.08	0.11	0.14	0.17	0.14	0.11	0.08	0.06	0.03

Empirical vs Theoretical

■ One Perspective: If the die are fair and we roll many many times, empirical should match theoretical.
■ Another Perspective: If the die are reasonably fair, the theoretical is close and saves the trouble of rolling.

Empirical vs Theoretical

-The Empirical Distribution is flawed because it relies on limited observations

- The Theoretical Distribution is flawed because it necessarily ignores details about reality
■ Exactitude? It's random.

Continuous vs Discrete

■ Discrete

- Value of dice
-Number of units sold
- ...

■ Continuous
Essentially, if we measure it, it's discrete
-Theoretical convenience

Probability

- Discrete: What's the probability we roll a 12 with two fair die:
- $1 / 36$

■ Continuous: What's the probability the temperature will be exactly $72.00^{\circ} \mathrm{F}$ tomorrow at noon EST?

- Zero!

■ Events: What's the probability that the temperature will be at least $72^{\circ} \mathrm{F}$ tomorrow at noon EST?

Continuous Distribution

Standard Normal Distribution

Total Probability

■ Empirical, Theoretical, Continuous, Discrete, ...
■ Probability is between 0 and 1

- Total Probability (over all possible outcomes) is 1

Summary Stats

- The Mean
-Weights each outcome by its probability
-AKA
- Expected Value
- Average
- May not even be possible
- Example:
- Win $\$ 1$ on Heads, nothing on Tails

Summary Stats

-The Variance

-Measures spread about the mean

- How unpredictable is the thing

Variance

Std. Deviation

■ Variance is measured in units squared -Think sum of squared errors
■ Standard Deviation is the square root
\rightarrow It's measured in the same units as the random variable

- The two rise and fall together

■ Coefficient of Variation
-Standard Deviation/Mean
-Spread relative to the Average

Balancing Risk

■ Basic Insight

- Bet on the outcome of a variable process
- Choose a value
- You pay $\$ 0.5 /$ unit for the amount your bet exceeds the outcome
- You earn the smaller of your value and the outcome
■ Question: What value do you choose?

Similar to...

■Anything you are familiar with?

The Distribution

Distributio:

The Idea

■ Balance the risks
■ Look at the last item
-What did it promise?
-What risk did it pose?
■ If Promise is greater than the risk?

- If the Risk is greater than the promise?

Measuring Risk and Return

- Revenue from the last item
- \$1 if the Outcome is greater, $\$ 0$ otherwise
- Expected Revenue
- $\$ 1$ *Probability Outcome is greater than our choice
- Risk posed by last item
- $\$ 0.5$ if the Outcome is smaller, $\$ 0$ otherwise
- Expected Risk
- \$0.5*Probability Outcome is smaller than our choice

Balancing Risk and Reward

■ Expected Revenue
-\$1*Probability Outcome is greater than our choice
■ Expected Risk
-\$0.5*Probability Outcome is smaller than our choice
■ How are probabilities Related?

Risk \& Reward

Balance

■ Expected Revenue

- \$1*(1- Probability Outcome is smaller than our choice)
- Expected Risk
- \$0.5*Probability Outcome is smaller than our choice
- Set these equal
$\rightarrow 1^{*}(1-\mathrm{P})=0.5^{*} \mathrm{P}$
- $1=1.5^{*} \mathrm{P}$
- $2 / 3=\mathrm{P}=$ Probability Outcome is smaller than our choice

Making the Choice

Distribution

Constrained Optimization

■ Feasible Direction techniques

- Eliminating constraints
\rightarrow Implicit Function
-Penalty Methods
■ Duality

Feasible Directions

■ Unconstrained Optimization

- Start at a point: x_{0}
-Identify an improsisibleving direction: d
-Find a best \wedge solution in direction $\mathrm{d}: \mathrm{x}+\varepsilon \mathrm{d}$
-Repeat
- A Feasible direction: one you can move in

■ A Feasible solution: don't move too far.
-Typically for Convex feasible region

Constrained Optimization

■ Penalty Methods
-Move constraints to objective with penalties or barriers

- As solution approaches the constraint the penalty increases
- Example:
- $\min f(x) \quad=>\quad \min f(x)+t /\left(3 x-x^{2}\right)$
- s.t. $x^{2} \leq 3 x$
- as x^{2} approaches $3 x$, penalty increases rapidly

Relatively reliable tools for

■ Quadratic objective

- Linear constraints

■ Continuous variables

Summary

■ "Easy Problems"

- Convex Minimization
- Concave Maximization

■ Unconstrained Optimization

- Local gradient information
- Constrained problems
- Tricks for reducing to unconstrained or simply constrained problems
■ NLP tools practical only for "smaller" problems

