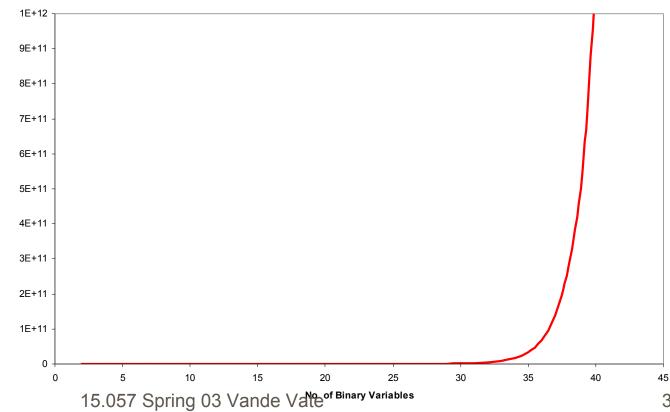
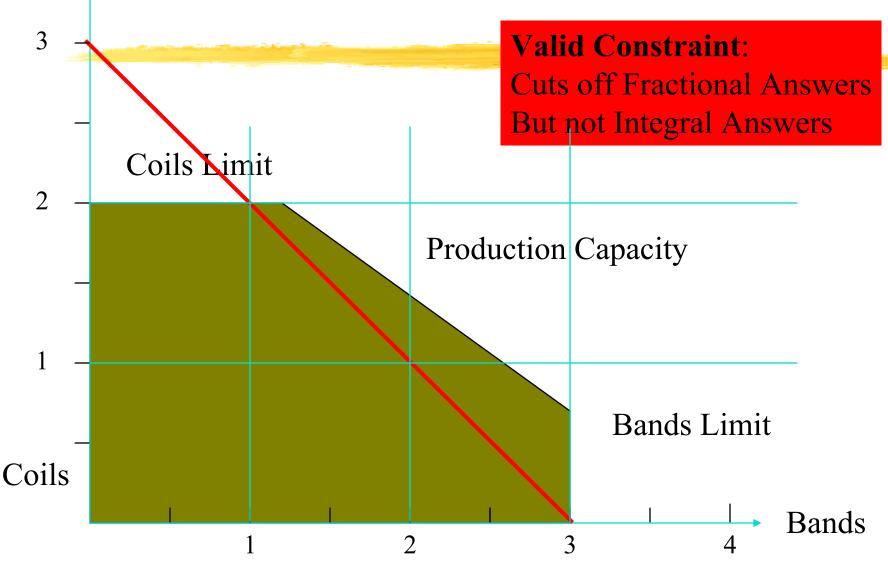
Integer Programming II


Modeling to Reduce Complexity Capturing Economies of Scale

Better Models

- Better Formulation can distinguish solvable from not.
- Often counterintuitive what's better
- Has led to vastly improved solvers that actually improve your formulation as they solve the problem.

Each new binary variable doubles the difficulty of the problem Potential Complexity



Eliminate Excess Variables

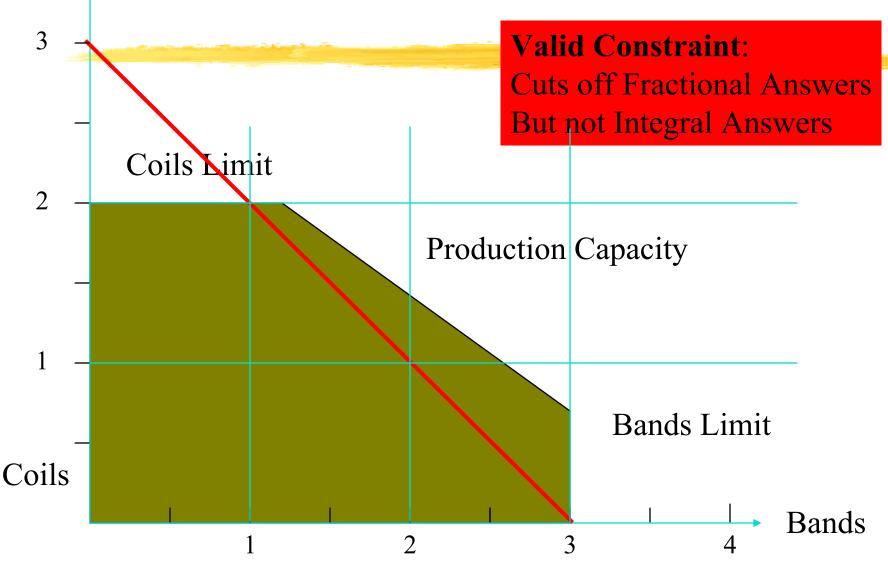
■ Assign each customer to a DC

s.t. AssignCustomers{cust in CUSTOMERS}:
 sum{dc in DCS} Assign[cust, dc] <= 1;
 What improvement?

Add Stronger Constraints

Adding Stronger Constraints

Formulating Current Constraints Better


- More constraints are generally better
- Use parameters carefully
- Creating new constraints that help

► Some examples

More is Better

■X, Y, Z binary ■Which is better? ■ Formulation #1 > X + Y \leq 2Z ■ Formulation #2 $X \leq Z$ $\mathbf{P} \mathbf{Y} \leq \mathbf{Z}$

Add Stronger Constraints

Lockbox Example

		Lockb	ox Model			
	Days to	Mail from E	Each Area t	o Each City		
City	Sea.	Chi.	NY	LA	Ľ	Daily Payments
NW	2	2	5	5	4	\$ 325,000
Ν	2	4	2	4	6	\$ 475,000
NE	5	5	5	2	8	\$ 300,000
SW	۷	4	6	8	2	\$ 275,000
S	e	6	6	6	4	\$ 385,000
SE	8	3	8	5	5	\$ 350,000
Oper.Cost	\$ 55,000	\$ 50,000) \$ 60,00	0 \$ 53,00	0	
Int. Rate	6.0%	, D				
City	Sea.	Chi.	NY	LA		Total Total Float
NŴ	()	0	0	0	0\$-
Ν	()	0	0	0	0\$-
NE	()	0	0	0	0\$-
SW	()	0	0	0	0\$-
S	()	0	0	0	0\$-
SE	()	0	0	0	0\$-
Total	()	0	0	0 1	otal Float \$ -
Open?	()	0	0	0 1	otal Cost to Operate
Cost	\$-	\$-	\$-	\$-		\$-
Eff. Cap.	()	0	0	0	
	Total Cost	-				

Challenge

Improve the formulation

	Lockbox Model					
Days to Mail from Each Area to Each City						
City	Sea.		NY	LA	Daily Payme	nts
NŴ	2	5	5	4	\$ 325,000	
N	4	2	4	6	\$ 475,000	
NE	5	5	2	8	\$ 300,000	
SW	4	6	8	2	\$ 275,000	
S	6	6	6	4	\$ 385,000	
SE	8	8	5	5	\$ 350,000	
Oper.Cost	\$ 55,000	\$ 50,000	\$ 60,000	\$ 53,000		
Int. Rate	6.0%					
City	Sea.	Chi.	NY	LA	Total	Total Float
NW	0	0	0	0	0	\$-
Ν	0	0	0	0	0	\$-
NE	0	0	0	0	0	\$-
SW	0	0	0	0	0	\$-
S	0	0	0	0	0	\$-
SE	0	0	0	0	0	\$-
Total	0	0	0	0	Total Float	\$-
Open?	0	0	0	0	Total Cost to	Operate
Cost	\$ -	\$-	\$ -	\$-	\$-	
Eff. Cap.	0	0	0	0		
	Total Cost	-				

Conclusion

■ Formulation #1

- Assign[NW, b] +Assign[N, b] + Assign[NE, b] +
- Assign[SW, b] +Assign[S, b] + Assign[SE, b]
- ► ≤ 6*Open[b]

■ Formulation #2

- ▶ Assign[NW,b] \leq Open[b]
- ► Assign[N, b] \leq Open[b]

Þ...

Don't aggregate or sum constraints

One Step Further

Impose Constraints at Lowest Level
 Some Compromise between

 Number of Constraints: How hard to solve LPs
 Number of LPs: How many LPs we must solve.

 Generally, better to solve fewer LPs.

Adapted from Moore et al pages 300 and following

Steco Revisited

Steco	o's Wa	areh	ouse	Loc	atio	n Moo	del	
Unit Costs	Lease	Unit Co	ost/Truc	k to Sa	les Dis	trict		
Warehouse	(\$)	1	2	3	4			
A	\$ 7,750	\$170	\$ 40	\$ 70	\$160			
В	\$ 4,000	\$150	\$195	\$100	\$ 10			
С	\$ 5,500	\$100	\$240	\$140	\$ 60			
		Mont	hly Tru	cks Fro	m/To			
							Eff.	
Decisions	Yes/No	1	2	3	4	Total	Сар.	Cap.
Lease A	0	0	0	0	0	0	0	200
Lease B	0	0	0	0	0	0	0	250
Lease C	0	0	0	0	0	0	0	300
Total	FrucksTo	0	0	0	0			
Demand (Tr	ucks/Mo)	100	90	110	60			
	Lease	T 4	то	то	T 4	Truck	Total	
•	Cost	To 1	To 2	To 3	To 4	\$	Cost	
	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	
В	\$ -	\$ -	\$ -		\$ (0)	\$ (0)	\$ (0)	
C	\$ -	\$ -	\$ -	\$ 0	\$ -	\$ 0	\$ 0	
Totals	\$ -	\$ -	\$ -	\$ 0	\$ (0)	\$ 0	\$0	

13

Challenge

Improve the formulation

Steco	o's Wa	areh	ouse	Loc	atior	n Mo	del	
Unit Costs	Lease	Unit Co	ost/Truc	k to Sa	les Dist	trict		
Warehouse	(\$)	1	2	3	4			
A	\$ 7,750	\$170	\$ 40	\$ 70	\$160			
В	\$ 4,000	\$150	\$195	\$100	\$ 10			
С	\$ 5,500	\$100	\$240	\$140	\$ 60			
		Mont	hly Tru	cks Fro	m/To			
							Eff.	
Decisions	Yes/No	1	2	3	4	Total	Cap.	Cap.
Lease A	0	0	0	0	0	0	0	200
Lease B	0	0	0	0	0	0	0	250
Lease C	0	0	0	0	0	0	0	300
Total T	[rucksTo	0	0	0	0			
Demand (Tru	ucks/Mo)	100	90	110	60			
	Lease					Truck	Total	
	Cost	To 1	To 2	To 3	To 4	\$	Cost	
A	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	\$ -	
В	\$ -	\$ -	\$ -	\$ -	\$ (0)	\$ (0)	\$ (0)	
С	\$ -	\$ -	\$ -	\$ 0	\$ -	\$ 0	\$ 0	
Totals	\$ -	\$ -	\$ -	\$ 0	\$ (0)	\$ 0	\$ 0	

More Detailed Constraints

s.t. ShutWarehouse{w in WAREHOUSES}:
 sum{d in DISTRICTS} Ship[w,d] <= Capacity[w]*Open[w];</pre>

s.t. ShutLanes{w in WAREHOUSES, d in DISTRICTS}:
 Ship[w,d] <= Demand[d]*Open[w];</pre>

Trade off between work to solve each LP and number of LPs we have to solve

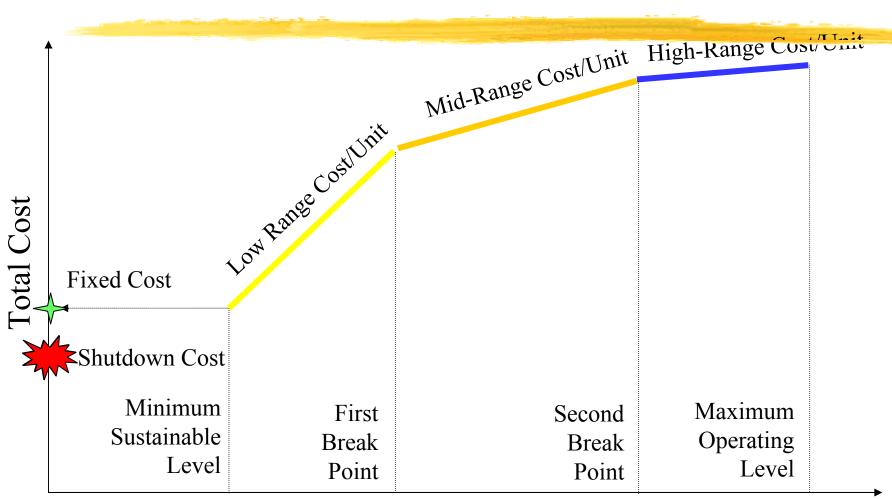
This makes each one harder, but we solve fewer.

Tighten Bounds

- Function of Continuous Variables <= Limit*Binary Variable
- Make the Limit as small as possible
- But not too small
- Don't eliminate feasible solutions
- We will see an Example with Ford Finished Vehicle Dist.

New Constraints

Recall the Single Sourcing Problem


Constraints

s.t. ObserveCapacity{dc in DCS}:
sum{cust in CUSTOMERS} Demand[cust]*Assign[dc,cust] <= Capacity[dc];
Example: x₁, x₂, x₃, x₄, x₅, x₆ binary
5x₁ + 7x₂ + 4x₃ + 3x₄ + 4x₅ + 6x₆ ≤ 14
What constraints can we add?
x + x + x ≤ 2

$$x_1 + x_2 + x_3 \le 2 x_1 + x_2 + x_6 \le 2$$

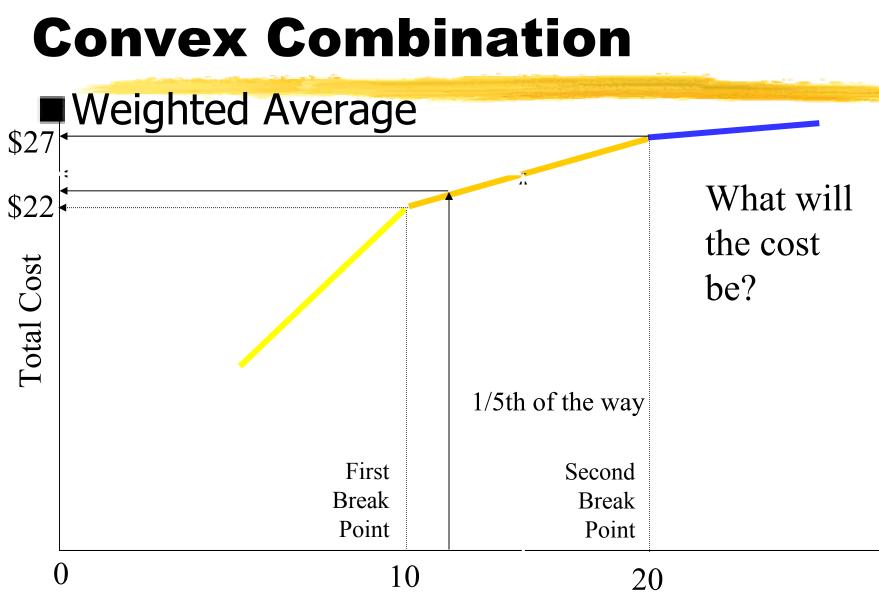
Non-Linear Costs

0

Volume of Activity

Modeling Economies of Scale

- Linear Programming
 - ► Greedy
 - ► Takes the High-Range Unit Cost first!
- Integer Programming
 - Add constraints to ensure first things first
 - Several Strategies


Good News!

- AMPL offers syntax to "automate" this
- Read Chapter 14 of Fourer for details
- <BreakPoint[1], BreakPoint[2]; Slope[1], Slope[2], Slope[3]>> Variable;

Slope[1] before BreakPoint[1]
Slope[2] from BreakPoint[1] to BreakPoint[2]
Slope[3] after BreakPoint[2]
Has 0 cost at activity 0

Summary

To control complexity and get solutions Eliminate unnecessary binary variables Don't aggregate constraints Add strong valid constraints Tighten bounds Integer Programming Models can approximate non-linear objectives

15.057 Spring 03 Vande Vate

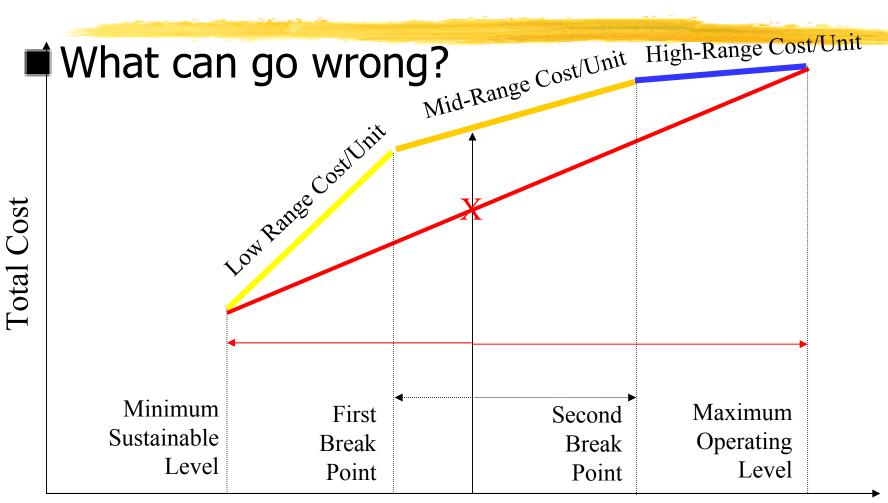
Conclusion

If the Volume of Activity is a fraction λ of the way from one breakpoint to the next, the cost will be that same fraction of the way from the cost at the first breakpoint to the cost at the next

If Volume = $10\lambda + 20(1-\lambda)$ Then Cost = $22\lambda + 27(1-\lambda)$

Idea

- Express Volume of Activity as a Weighted Average of Breakpoints
- Express Cost as the same Weighted Average of Costs at the Breaks
- Activity = Min Level λ_0 + Break 1 λ_1 + Break 2 λ_2 + Max Level λ_3
- Cost at Min Level λ_0 + Cost at Break 1 λ_1 + Cost at Break 2 λ_2 + Cost at Max Level λ_3


 $\blacksquare \mathbf{1} = \lambda_0 + \lambda_1 + \lambda_2 + \lambda_3$

In AMPL Speak

- param NBreaks;
- param BreakPoint{0..NBreaks};
- param CostAtBreak{0...NBreaks};
- var Lambda{0..NBreaks} >= 0;
- var Activity;
- var Cost;
- s.t. DefineCost:
- Cost = sum{b in 0..NBreaks} CostAtBreak[b]*Lambda[b];
- s.t. DefineActivity:
- Activity = sum{b in 0..NBreaks} BreakPoint[b]*Lambda[b];
- s.t. ConvexCombination:
- 1 = sum{b in 0..NBreaks}Lambda[b];

Does that Do It?

0

Volume of Activity

Role of Integer Variables

Ensure we express Activity as a combination of two consecutive breakpoints

var InRegion{1..NBreaks} binary;

	InRegion[1]	InRegion[2]	InRegion[3]
Minimum	First	Second	Maximum
Sustainable	Break	Break	Operating
Level	Point	Point	Level

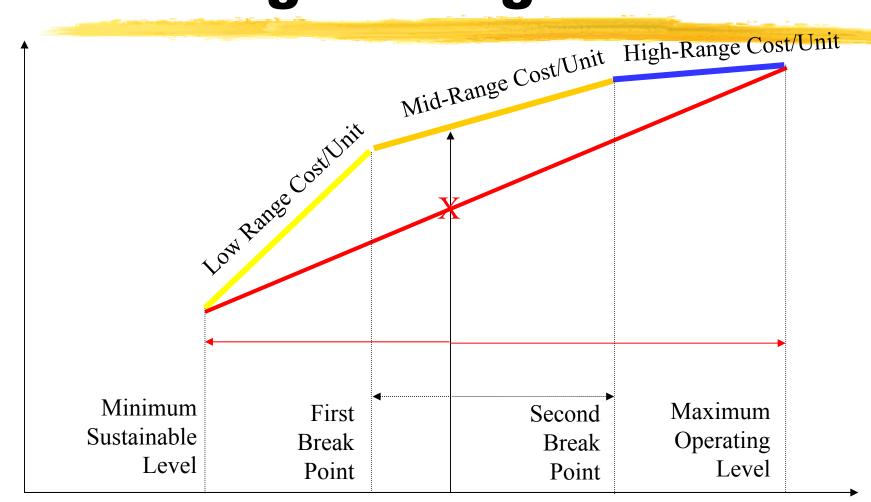
Fotal Cost

Constraints

Lambda[2] = 0 unless activity is between

BreakPoint[1] and BreakPoint[2] (Region[2]) Or

BreakPoint[2] and BreakPoint[3] (Region[3])


Lambda[2] ≤ InRegion[2] + InRegion[3];

	InRegion[1]	InRegion[2]	InRegion[3]	
Minimum Sustainable Level	First Break Point	Second Break Point	Maximum Operating Level	
BreakPoint[0] BreakPoint[1]	BreakPoint[2	2] BreakPoint[3	3]

And Activity in One Region

- InRegion[1] + InRegion[2] + InRegion[3] ≤ 1 ■ Why ≤ 1 ?
- If it is in Region[2]:
 - $Lambda[1] \leq InRegion[1] + InRegion[2] = 1$
 - Lambda[2] ≤ InRegion[2] + InRegion[3] = 1
 Other Lambda's are 0

We can't go wrong

Volume of Activity

0

AMPL Speak

param NBreaks;

```
param BreakPoint{0..NBreaks};
```

```
param CostAtBreak{0..NBreaks};
```

```
var Lambda{0..NBreaks} >= 0;
```

- var Activity;
- var Cost;
- s.t. DefineCost:
- Cost = sum{b in 0..NBreaks} CostAtBreak[b]*Lambda[b];

s.t. DefineActivity:

Activity = sum{b in 0..NBreaks} BreakPoint[b]*Lambda[b];

- s.t. ConvexCombination:
- 1 = sum{b in 0..NBreaks}Lambda[b];

What we Added

- var InRegion{1...NBreaks} binary;
- s.t. InOneRegion:
- sum{b in 1..NBreaks} InRegion[b] <= 1;</p>
- s.t. EnforceConsecutive{b in 0..NBreaks-1}:
- Lambda[b] <= InRegion[b] + InRegion[b+1];</p>
- s.t. LastLambda:
 - Lambda[NBreaks] <= InRegion[NBreaks];</p>