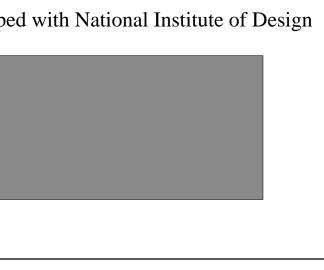

Sales of Handloom Saris

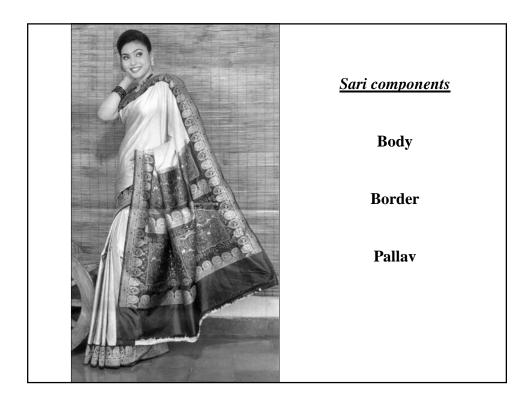
An Application of Logistic Regression

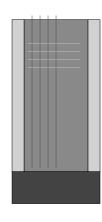
Handloom Industry in India

- Decentralized, traditional, rural, co-ops
- Direct employment of 10 million persons
- Accounts for 30% of total textile production

Co-optex (Tamilnadu State)


- Large: 700 outlets; \$30 million; 400,000 looms
- Strengths:
 - Design variety, short run lengths
 - Majority sales through co-op shops
- Weaknesses:
 - Competing with mills difficult
 - Large inventories, high discount sales


Study Question


- Improve feedback of market to designs through improved product codes
- Assess economic impact of proposed code
- Pilot restricted to saris
 - Most difficult
 - Most valuable

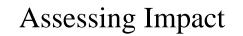
A Consumer-oriented Code for Saris

• Developed with National Institute of Design

Sari Code

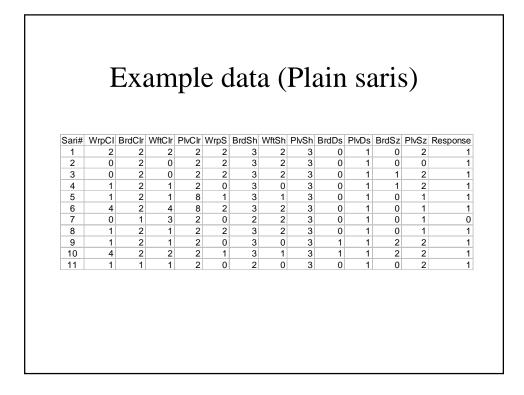
Body:Warp Color & Shade (WRPC, WRPS)

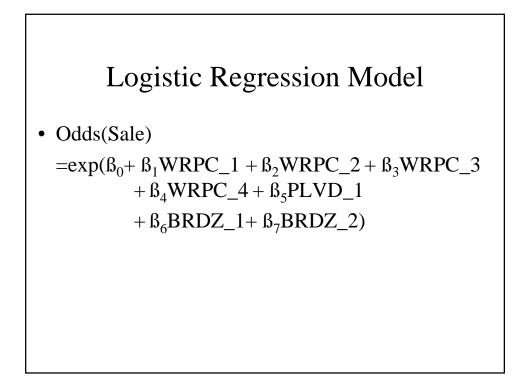
Weft Color & Shade (WFTC, WFTS)


Body Design (BODD)

Border: Color, Shade, Design, Size (BRDC, BRDS, BRDD, BRDZ)

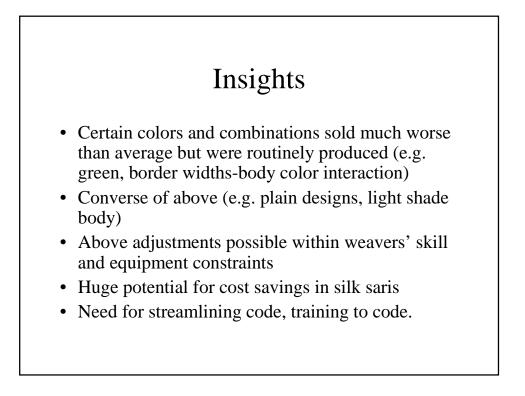
Pallav: Color, Shade, Design, Size (PLVC, PLVS, PLVD, PLVZ)


Code Levels


- <u>Color</u> (Warp, weft, border, pallav) 10 levels:0=red, 1=blue, 2=green, etc.
- <u>Shade</u> (Warp, weft, border, pallav)
 4 levels: 0=light, 1=medium, 2=dark, 3=shiny;
- <u>Design</u> (Body, border, pallav)
 23 levels: 0=plain, 1=star buttas, 2=chakra buttas, etc.
- <u>Size</u> (Border, pallav) - 3 levels: 0= broad, 1=medium, 2=narrow

Major Marketing Experiment

- 14 day high season period selected
- 18 largest retail shops selected
- 20,000 saris coded, sales during period recorded
- Logistic Regression models developed for Pr(sale of sari during period) as function of coded values.


Coefficient Estimates

Variable	Coeff	Odds
Constant	-0.698	
WrpCI_1	0.195	1.215
WrpCI_2	-2.220	0.109
WrpCI_3	-2.424	0.089
WrpCI_4	-0.072	0.931
PlvDs_1	1.866	6.462
BrdSz_1	-0.778	0.459
BrdSz_2	-0.384	0.681

		nfusion T t-off probability		
		Actua	al	
Predicted		Sale	No Sale	Total
	Sale	15	5	20
	No Sale	5	32	37
	Total	20	37	57

Impact

- Producing only saris that have predicted probability > 0.5 will reduce slow-moving stock substantially. In the example, slowmoving stock will go down from 65% of production to 25% of production
- Even cut-off probability of 0.2 reduces slow stock to 49% of production

Reasons for Versatility of Logistic Regression Models in Applications

- Derivable from random utility theory of discrete choice
- Intuitive model for choice-based samples and case-control studies
- Derivable from latent continuous variable model
- Logistic Distribution indistinguishable from Normal within ±2 standard deviations range
- Derivable from Normal population models of discrimination (pooled covariance matrix)
- Fast algorithms
- Extends to multiple choices (polytomous regression)
- Small sample exact analysis useful for rare events (e.g. fraud, accidents, lack of relevant data, small segment of data)