NON LINEAR PROGRAMMING Prof. Stephen Graves

Consider the example we used to introduce Lagrange multipliers:

$$
\begin{aligned}
& \text { MIN } f\left(Q_{1}, Q_{2}, Q_{3}\right)=\sum_{i=1}^{3} \frac{S_{i} D_{i}}{Q_{i}}+\frac{H_{i} Q_{i}}{2} \\
& \text { s.t. } g\left(Q_{1}, Q_{2}, Q_{3}\right)=\sum_{i=1}^{3} \frac{T_{i} D_{i}}{Q_{i}}=K
\end{aligned}
$$

Some definitions:

Gradient of \mathbf{f} :

$$
\begin{aligned}
\nabla \mathrm{f} & =\left(\frac{\partial \mathrm{f}}{\partial \mathrm{Q}_{1}}, \frac{\partial \mathrm{f}}{\partial \mathrm{Q}_{2}}, \frac{\partial \mathrm{f}}{\partial \mathrm{Q}_{3}}\right) \\
& =\left(-\frac{\mathrm{S}_{1} \mathrm{D}_{1}}{\mathrm{Q}_{1}^{2}}+\frac{\mathrm{H}_{1}}{2},-\frac{\mathrm{S}_{2} \mathrm{D}_{2}}{\mathrm{Q}_{2}^{2}}+\frac{\mathrm{H}_{2}}{2},-\frac{\mathrm{S}_{3} \mathrm{D}_{3}}{\mathrm{Q}_{3}^{2}}+\frac{\mathrm{H}_{3}}{2}\right)
\end{aligned}
$$

Gradient of \mathbf{g} :

$$
\begin{aligned}
\nabla \mathrm{g} & =\left(\frac{\partial \mathrm{g}}{\partial \mathrm{Q}_{1}}, \frac{\partial \mathrm{~g}}{\partial \mathrm{Q}_{2}}, \frac{\partial \mathrm{~g}}{\partial \mathrm{Q}_{3}}\right) \\
& =\left(-\frac{\mathrm{T}_{1} \mathrm{D}_{1}}{\mathrm{Q}_{1}^{2}},-\frac{\mathrm{T}_{2} \mathrm{D}_{2}}{\mathrm{Q}_{2}^{2}},-\frac{\mathrm{T}_{3} \mathrm{D}_{3}}{\mathrm{Q}_{3}^{2}}\right)
\end{aligned}
$$

Directional derivatives:

Let $\underline{\mathbf{x}}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ denote a direction. The directional derivative for \mathbf{f} and \mathbf{g} are given by:

$$
\begin{aligned}
& \frac{d \mathrm{f}}{\mathrm{~d} \underline{x}}=\sum_{i=1}^{3}\left(\frac{\partial \mathrm{f}}{\partial \mathrm{Q}_{\mathrm{i}}}\right) \mathrm{x}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{3}\left(-\frac{\mathrm{S}_{\mathrm{i}} D_{i}}{\mathrm{Q}_{\mathrm{i}}^{2}}+\frac{\mathrm{H}_{\mathrm{i}}}{2}\right) \mathrm{x}_{\mathrm{i}} \\
& \frac{\mathrm{~d} \mathrm{~g}}{\mathrm{~d} \underline{x}}=\sum_{i=1}^{3}\left(\frac{\partial \mathrm{~g}}{\partial \mathrm{Q}_{\mathrm{i}}}\right) x_{i}=\sum_{i=1}^{3}\left(-\frac{T_{i} D_{i}}{Q_{i}^{2}}\right) x_{i}
\end{aligned}
$$

Note: the directional derivative is the "dot product" of the gradient and the direction vector.

For a given point, say $\left(Q_{1}, Q_{2}, Q_{3}\right)$, what is the direction of steepest ascent for the objective function \mathbf{f} ? That is, what direction provides the largest value for the directional derivative? The direction of steepest ascent will be the solution to the following optimization problem:

$$
\begin{aligned}
& \operatorname{MAX} \frac{\mathrm{df}}{\mathrm{~d} \underline{x}}=\sum_{i=1}^{3}\left(-\frac{\mathrm{S}_{\mathrm{i}} D_{i}}{\mathrm{Q}_{\mathrm{i}}^{2}}+\frac{\mathrm{H}_{\mathrm{i}}}{2}\right) \mathrm{x}_{\mathrm{i}} \\
& \text { s.t. } \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}=1
\end{aligned}
$$

By using a Lagrange multiplier to solve this problem, you can show that the direction of steepest ascent is given by

$$
\underline{\mathbf{x}}^{*}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\nabla \mathrm{f} /\|\nabla \mathrm{f}\|
$$

That is, the "best" direction is the (normalized) gradient; for our example, the direction of steepest ascent (not normalized) is

$$
\underline{\mathbf{x}}^{*}=\left(-\frac{\mathrm{S}_{1} \mathrm{D}_{1}}{\mathrm{Q}_{1}^{2}}+\frac{\mathrm{H}_{1}}{2},-\frac{\mathrm{S}_{2} \mathrm{D}_{2}}{\mathrm{Q}_{2}^{2}}+\frac{\mathrm{H}_{2}}{2},-\frac{\mathrm{S}_{3} \mathrm{D}_{3}}{\mathrm{Q}_{3}^{2}}+\frac{\mathrm{H}_{3}}{2}\right)
$$

Note that since the actual problem is a minimization, we actually want the direction of steepest descent, which would just be the negative of the gradient.

Now suppose that the given point $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}\right)$ is feasible; that is, it satisfies the constraint:

$$
g\left(Q_{1}, Q_{2}, Q_{3}\right)=K
$$

What is the best feasible direction?

The best feasible direction (for ascent) will be the solution to the following optimization problem:

$$
\begin{aligned}
& \operatorname{MAX} \frac{\mathrm{d} \mathrm{f}}{\mathrm{~d} \underline{x}}=\sum_{i=1}^{3}\left(-\frac{\mathrm{S}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}}{\mathrm{Q}_{\mathrm{i}}^{2}}+\frac{\mathrm{H}_{\mathrm{i}}}{2}\right) \mathrm{x}_{\mathrm{i}} \\
& \text { s. t. } \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1 \\
& \frac{\mathrm{dg}}{\mathrm{~d} \underline{x}}=\sum_{i=1}^{3}\left(-\frac{T_{i} D_{i}}{Q_{i}^{2}}\right) x_{i}=0
\end{aligned}
$$

By using two Lagrange multipliers to solve the problem, you can find that the best feasible direction (called the reduced gradient) is given by:

$$
\underline{\mathrm{x}^{*}}=\left(\begin{array}{c}
\mathrm{x}_{1}^{*}, \mathrm{x}_{2}^{*}, \mathrm{x}_{3}^{*}
\end{array}\right)=\nabla \mathrm{f}-\left(\frac{\nabla \mathrm{f} \bullet \nabla \mathrm{~g}}{\nabla \mathrm{~g} \bullet \nabla \mathrm{~g}}\right) \nabla \mathrm{g}
$$

where $\nabla \mathrm{f} \bullet \nabla \mathrm{g}=\sum_{\mathrm{i}=1}^{3}\left(\frac{\partial \mathrm{f}}{\partial \mathrm{Q}_{\mathrm{i}}} \frac{\partial \mathrm{g}}{\partial \mathrm{Q}_{\mathrm{i}}}\right)$, and $\nabla \mathrm{g} \bullet \nabla \mathrm{g}=\sum_{\mathrm{i}=1}^{3}\left(\frac{\partial \mathrm{~g}}{\partial \mathrm{Q}_{\mathrm{i}}} \frac{\partial \mathrm{g}}{\partial \mathrm{Q}_{\mathrm{i}}}\right)$

The reduced gradient can then be used as a search direction to improve the current solution. To see that the reduced gradient is a feasible direction, we note that
$\underline{x^{*}} \cdot \nabla \mathrm{~g}=\nabla \mathrm{f} \bullet \nabla \mathrm{g}-\left(\frac{\nabla \mathrm{f} \bullet \nabla \mathrm{g}}{\nabla \mathrm{g} \bullet \nabla \mathrm{g}}\right) \nabla \mathrm{g} \bullet \nabla \mathrm{g}=\underline{\mathbf{0}}$
Besides determining the reduced gradient, an algorithm would also need to determine the "step size:" namely how far to move along the reduced gradient. An algorithm stops when the reduced gradient equals (approximately) the zero vector.

