Lecture 6

- Reminder
 - Pick up confidential info for Stakes of Engagement from the Black Folder Box
- Debrief Jessie Jumpshot
- Fair Division
- Rothman Art Collection

Themes

- Creating value by exploiting differences in
 - Probabilities
 - Values
- How to construct an efficient frontier
- What is Fair?
- How do divide up indivisible goods gracefully

Jessie Jumpshot

Creating Value with Contingent Contracts

Raiffa's Full Open Truthful Exchange or How to Calculate Contracts that are Un-dominated

From *Lectures on Negotiation* By Howard Raiffa (1996)

The Problem

- Janet and Marty must divide 20 items
- Contexts:
 - Dividing an estate
 - Dividing a partnership
 - Getting a divorce



Number of Contracts = $2^{20} = 1,048,576$

Full Open Truthful Exchange

• Parties trust each other and are willing to exchange truthful information about their preferences for a list of items.

• They must decide how to divide them.

First Steps

- List all items
- Each party allocates points measuring the desirability of each item
- For ease of interpretation:
 - Each possesses 100 points to allocate
 - Points are non-zero and sum to 100

Janet & Marty Must divide 20 Items

Items	Janet	Marty
1	1	2
2	1.5	1
3	8	5
4	1.5	3
5	9	7
6	2	3
7	3	8
8	14	30
9	05	1
10	0	1
11	7	4
12	0.5	0.5
13	25	18
14	0.5	1
15	10	5
16	4.5	3
17	3	0.5
18	8	4
19	0.5	1
20	0.5	2
	100	100

Each allocates 100 points among 20 items

9

Objective

- Find all *un-dominated* allocations or contracts
 - An allocation is un-dominated if there does not exist an allocation preferred by *both* parties

• Un-dominated allocations are called "efficient" or "Pareto Optimal"

– after the economist Vilfredo Pareto.

WHY?

- Pareto efficient allocations or contracts separate the wheat from the chaff:
 - Separates contracts for which both can do better from those for which it is not possible to improve both parties' payoffs.
- Shows where value can be created!
- Enables parties to focus on claiming value once we identify all agreements that are not dominated.

Steps

Compute the ratio of scores for "Janet" and "Marty": if Janet assigns 8 points to item 3 and Marty assigns 5 points, the ratio is 8/5 = 1.60. Figure removed due to copyright restrictions. See Figure 26 from Raiffa, Howard. *Lectures on Negotiation Analysis*, Program on Negotiation at the Harvard Law School, 1998.

- Sort the list with the largest ratio for Janet/ Marty at the top and the smallest at the bottom:
 - Ratios in column 4

• Begin by allocating all items to Marty, so Janet has a score of 0 and Marty a score of 100.

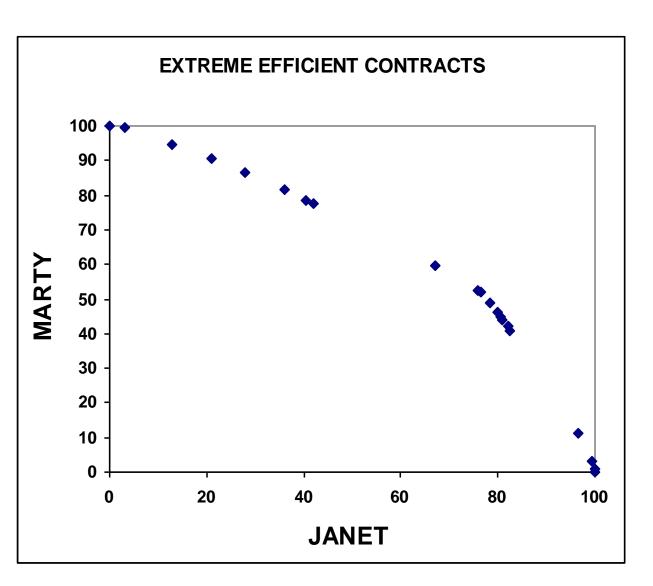
- The largest ratio, say, 6 means that for each point increment we add to Janet for the item at the top of the list, we only decrease Marty's score by 1/6:
 - Allocating item 17 to Janet gets her 3 points and reduces Marty's points by only .5

Extreme Efficient Contracts

- If we continue down the list in this fashion, we generate a set of *extreme efficient contracts!*
- *Plot* the extreme efficient contracts.
- You are now on your way to deciding what constitutes a fair division of items. No one of these allocations (contracts) are dominated.

Figure removed due to copyright restrictions. See Figure 27 from Raiffa, Howard. *Lectures on Negotiation Analysis*, Program on Negotiation at the Harvard Law School, 1998.

Add'l		
Items		
to Janet	JANET	MARTY
	0	100
17	3	99.5
15	13	94.5
18	21	90.5
11	28	86.5
3	36	81.5
16	40.5	78.5
2	42	77.5
13	67	59.5
5	76	52.5
12	76.5	52
6	78.5	49
4	80	46
9	80.5	45
14	81	44
1	82	42
19	82.5	41
8	96.5	11
7	99.5	3
20	100	1
10	100	0



Extreme Efficient Contracts that Maximize the Minimum that a Party Gets

- If party 1 gets S₁ and party 2 gets S₂ finding Max Min {S₁, S₂} is clearly not a linear problem!
- Finding the set of efficient contracts that maximize the minimum any one party gets can be turned into a simple linear programming problem by a clever trick

Formulation

 c_{i1} is the point value of item i to party 1;

 c_{i2} is the point value of item i to party 2

 $z_{ij} = 1$ if item i goes to party j and equals 0 otherwise

$$S_i = \sum_{i=1}^{n} c_{ij} \times z_{ij}, \text{ total points to party } i$$

$MaxMin{S_1, S_2}$

subject to

 $S_{1} = \sum_{i=1}^{n} z_{i1} \times c_{i1} \text{ and } S_{2} = \sum_{i=1}^{n} z_{i2} \times c_{i2}$ Linear Constraints on the z_{ijs} For example, $z_{i1} = 1 - z_{i2}$ and sumof all z_{ijs} equals the number n of items

TRANSLATION TO AN LP PROBLEM

Define a new variable θ and then find

 $Max\theta$ such that

$$\theta \leq S_{1} = \sum_{i} z_{i1}c_{i1}$$
 and $\theta \leq S_{2} = \sum_{i} z_{i2}c_{i2}$ plus
and to Linear Constraints on the $z_{ij}s$

Fair Division Schemes

Naïve, Steinhaus, Vickery

Fair Division Problem

• An Estate consisting of four indivisible items are to be shared "equally" by three children

• Each child assigns a "monetary worth" to each item

What is "FAIR"? (Brahms & Taylor 1999)

• Proportionality

• Envy Freeness

- Equitability
- Efficiency

Proportionality

• If division is among N persons, each **THINKS** he/she is getting *at least* 1/N

Envy Freeness

- No party is willing to give up the portion it receives in exchange for someone else's share
 - For two parties, this = Proportionality
 - For more than two parties, Envy Freeness is
 STRONGER than Proportionality
 - Someone may still be getting more than you!
 - Envy Freeness is Proportional but not conversely

Equitability

Each party THINKS—according to her/his individual preferences--that she/he received the same fraction of total value

 Coupled with envy-freeness, each of two parties would think that both exceed 50% of value, in their preference terms, by the same amount

Efficiency

• There is no other allocation that is better for one party without being worse for one or more other parties.

Impossibility Theorem (Brahms & Taylor)

• NO allocation scheme ALWAYS satisfies

– Equitability

- Envy Freeness

- Efficiency

(Rijnierse and Potters in Brahms & Taylor)

<u>Items</u>	<u>Ann</u>	Ben	<u>Carol</u>
A	40	30	30
В	50	40	30
С	10	30	40

• 40-40-40 is both Efficient and Equitable

- However, it is not Envy Free!
 - Ann envies Ben for getting B which is worth 50 points to her
 - Allocating B to Ann and A to Ben (Carol still gets
 C) is Efficient but is neither Equitable nor Envy
 Free
 - Each now gets a different number of points
 - Ben now envies Ann

Dividing Indivisible Goods

Estate Planning

Monetary Worth To Children

Individuals

Items	1	2	3
Α	\$10,000	\$4,000	\$7,000
В	2,000	1,000	4,000
С	500	1,500	2,000
D	800	2,000	1,000

Side Payments?

Player	Allocated	Worth	Side	Total
	to:		Payments	
1	А	10,000		
2	D	2,000		
3	B & C	6,000		

Naive

Player	Allocated	Worth	Side	Total
	to:		Payments	
1	A	10,000	-4,000	6,000
2	D	2,000	+4,000	6,000
3	B & C	6,000		6000

• Accounts only for item value assigned by person who values that item the most

Steinhaus

Player	Allocated	Worth	Side	Total
	to:		Payments	
1	А	10,000		
2	D	2,000		
3	B & C	6,000		

Imagined Disagreement Point

• Each gets 1/3 of each item (at his/her evaluation)

Items	1	2	3
А	\$10,000	\$4,000	\$7,000
В	2,000	1,000	4,000
С	500	1,500	2,000
D	<u>800</u>	<u>2,000</u>	1,000
	\$4,333	\$2,833	\$4,667

Sum of 1/3 Values = \$11,033

Allocation of Excess

Initially each gets 1/3 of each item (at his/her evaluation)

Child	Disagreement	Share of	Total
	Payoff	Excess	
1	4,433	2,022	6,455
2	2,833	2,022	4,855
3	4,667	2.022	6,689

Sum of 1/3 of each item = 11,033

Pareto Optimal Sum = 18,000

Steinhaus

Player	Allocated	Worth	Side	Total	
	to:		Payments		
1	A	10,000	-3,544	6,455	
2	D	2,000	+2,855	4,855	
3	B & C	6,000	+689	6,689	

18,000 0 18,000

Vickery Auction High Bidder Wins at 2nd Highest Price

Player	Allocated	Worth	Side	Total
	to:		Payments	
1	A	10,000		
2	D	2,000		
3	B & C	6,000		

Vickery Auction Side Payments

	Auction	Share of	Side	
Child	Payment	Receipts	Payment	
1	7,000	3,833	-3,167	
2	1,000	3,833	+2,833	
3	3,500	3,833	+333	
	Sum =11,500	1/3 of 11,50 to Each)() 42	

Vickery Auction

• Engenders HONESTY!

• Does not pay to distort values assigned to individual items

	NAIVE		STEINHAUS		VICKERY	
	Side Paymen	Total t	Side Paymer	Total	Side <u>Payment</u>	Total
1	-4,000	6,000	-3,545	6,455		6,833
2	+4000	6,000	+2,855	4,855	+2,833	4,833
3	0	6,000	+689	6,689	+333	6,333

PROBLEM!

• None of these schemes DIRECTLY take into account individual (artistic) preferences of participants—only monetary values

Nash-Raiffa Arbitration Scheme

Informal Summary

Nash Theorem

 $\mathbf{x} = A$ contract or negotiation alternative

$X = \{x_1, ..., x_N\}, Set of all possible alternatives$

$U_Y(\mathbf{x}) = Utility to you of alternative \mathbf{x}$

$U_M(\mathbf{x}) = Utility to me of alternative \mathbf{x}$

Assumptions

• Utility Invariance:

 If two versions of the same bargaining problem differ only in units (scale) and origins of participants' utility functions then arbitrated solutions are related by the same utility transformations

• Pareto Optimality:

 Given an arbitrated solution, there exists no other arbitrated solution for which both parties are better off

• Symmetry

 If an abstract version of the game places participants in completely symmetric roles, the arbitrated value will give them equal utility payoffs

Independence of Irrelevant Alternatives

- Suppose two games have the same status quo (BATNA) points and that the trading possibilities of one are included in the other.
- If the arbitrated solution of the game with the larger set of alternatives is a feasible trade in the game with the smaller set of alternatives then it is also the arbitrated solution of the latter.

Nash-Raiffa Theorem

• The "allocation" scheme that satisfies the four assumptions stated is unique.

• The unique solution is found as follows:

Nash Arbitration Scheme

 $\overline{U}_Y = Utility \ of " \ No \ Deal" -> The \ Status \ Quo \ for \ you.$ $\overline{U}_M = Utility \ of " \ No \ Deal" -> The \ Status \ Quo \ for \ me.$ $\mathbf{X} = The \ set \ of \ all \ feasible \ agreements$

Solution is $\mathbf{x}^* \in \mathbf{X}$ satisfying $Max_{\mathbf{X} \in \mathbf{X}} \quad [U_Y(\mathbf{x}) - \overline{U}_Y] \times [U_M(\mathbf{x}) - \overline{U}_M]$

Fair Division of An Art Collection

The Rothman Art Collection

Agreed Upon Objectives

- Equal Fair Market Value
- Honest revelation of preferences
- Allow for emotional meaning attached to items
- Avoid strategic thinking
- Avoid post-decisional regret
- Take into account complementarity and substitutability

Protocol

- 1) **Explain** the process
- 2) Compose a list
- 3) Split list into manageable size categories
- 4) **Present** a few categories at once. Ask parties to state their preferences in any way that is comfortable:
 - Encourage them to "star" important items, rank items, give opinions about trade-offs

 Follow up statements about preferences.
 Ask questions in a way that provides information without encouraging misrepresentation.

6) Keep all information presented to you *strictly confidential.*

7) **Construct** a preliminary allocation in which items are distributed such that:

>All parties do about equally well on their own subjective scales and

➢ Fair market values of the participant's allocations are roughly equal

Key to Success: Differences in Relative Preferences

- Give each brother more than he expected while treating each equally in \$ allocated.
- A random division by flipping a coin doesn't necessarily yield equal value:
 - One brother receives 1st, 3rd, 5th, 7th...
 - The other receives 2nd, 4th, 6th, 8th,....
- If Lorin goes first he gets \$39K and Paul gets \$31K.

Artist Selda Gund

This allocation is described in the paragraphs below Table 1 in the Rothman Art Collection

case

Item

1

2

3

4

5

6

7

8

9

10

11

12

13

L

(\$1,000) (\$1,000) Allocation Fair Market Rank Market Values Fair Market Description Value Paul Lorin Paul Lorin Lorin Paul Value \$10 **Brown Bear** \$10 2 2 \$0 \$10 0 1 Lion \$9 \$0 \$9 1 6 1 0 \$9 \$8 \$8 Piq 12 8 0 \$0 \$8 \$6 13 7 \$6 \$6 Monkey 0 1 \$0 Polar Bear \$6 5 9 \$6 \$0 \$6 1 0 Rabbit \$6 9 12 0 \$6 \$0 \$6 1 Turtle \$6 10 11 \$0 \$6 \$6 0 1 Robin \$2 \$2 \$2 8 13 0 \$0 1 Small Bear \$2 7 \$0 \$2 \$2 3 0 1 \$9 3 \$0 \$9 Swallow 10 0 \$9 1 \$3 Turkey \$3 6 5 \$3 \$0 0 1 \$2 \$2 4 \$2 \$0 Dog 4 1 0 \$1 11 \$1 \$1 Cat 1 0 \$0 1 Lorin ranks Lion 1, Paul 6: \rightarrow Lion to Market Value to Each: \$35 \$35 \$70 Lorin

- II Paul ranks Cat 1, Lorin 11: Assign Cat to Paul Paul states that he likes Cat and Brown Bear much more than the other 11
- III paintings .Give Paul Brown Bear
- IV Assign Pig, Monkey, Turtle, Robin & Small Bear to Paul
- V Assign Polar Bear, Rabbit, Swallow, Turkey, & Dog to Lorin

Lorin gets his 1st,3rd, 4th,5th,6th and 9th ranked painting 5 of top 6 Paul gets his 1st,2nd,3rd,7th,8th,11th and 13th ranked painting 5 of top 8

Typical Problems

- Items are really discrete and opinions may be "lumpy".
- Both may have similar rankings of preferences.
- Confusing signals: Paul ranked all items in a group but starred some of them. Some starred items were ranked *below* unstarred items.

• A star next to an item low in ranking signals that it was worth, to the evaluator, far more than its associated fair market value.

• **Complementarity**: One brother may insist that a "block" of painting not be split up while the other won't accept that the entire block go to one party.

Diffusing Attention from a Single Painting

• Ask for comparisons of four or five groups of paintings with the disputed painting among some of these groups.

Strategic Misrepresentation

- This system is predicated on each brother having complete information about his own preferences, but only probabilistic information about the other brother.
- With only an impressionistic understanding of the other brother's preferences, distorting your own to gain advantage MAY BACKFIRE!

The Potential for Strategic Misrepresentation Limits the Usefulness of Joint Fact Finding

- Mediators often ask parties to discuss issues face to face to attain convergence of beliefs.
- A skilled analyst can exploit this to her advantage, because she will learn about the preferences of her counterpart.
- This would destroy differences in preferences which we use to generate joint gains.

Sense of Loss

- Even when a brother received more than he expected, he wasn't overly enthusiastic.
- Emotional attachment engendered a sense of what was lost.
- Reduce expectations with "...this was an extremely difficult category to divide...but we did the best we could..."

Gaining Closure

- Get the brothers to sign off on the first half of the estate before moving on.
- This will smooth discussion of the second half if the brothers are pleased with allocations on the first half.

Concerns about "Finality"

• Suggest at the outset that we might meet in a year to discuss trades, a 'Post-Settlement Settlement'.

MIT OpenCourseWare http://ocw.mit.edu

15.067 Competitive Decision-Making and Negotiation Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.