MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Problem 1. Let B be standard Brownian motion. Show that $\mathbb{P}\left(\lim \sup _{t \rightarrow \infty} B(t)=\right.$ $\infty)=1$.

Problem 2. (a) Consider the following sequence of partitions $\Pi_{n}, n=1,2, \ldots$ of $[0, T]$ given by $t_{i}=\frac{i}{n}, 0 \leq i \leq n$. Prove that quadratic variation of a standard Brownian motion almost surely converges to $T: \lim _{n} Q\left(\Pi_{n}, B\right)=1$ a.s., even though $\sum_{n} \Delta\left(\Pi_{n}\right)=\sum_{n} 1 / n=\infty$.
(b) Suppose now the partition is generated by drawing n independent random values $t_{k}=U_{k}, 1 \leq k \leq n$ drawn uniformly from $[0, T]$ and independently from the Brownian motion. Prove that $\lim _{n} Q\left(\Pi_{n}, B\right)=T$ a.s. Note, almost sure is with respect to the probability space of both the Brownian motion probability and uniform sampling.

Problem 3. Suppose $X \in \mathcal{F}$ is independent from $\mathcal{G} \subset \mathcal{F}$. Namely, for every measurable $A \subset \mathbb{R}, B \in \mathcal{G} \mathbb{P}(\{X \in A\} \cap B)=\mathbb{P}(X \in A) \mathbb{P}(B)$. Prove that $\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X]$.

Problem 4. Consider an assymetric simple random walk $Q(t)$ on \mathbb{Z} given by $\mathbb{P}(Q(t+1)=x+1 \mid Q(t)=x)=p$ and $\mathbb{P}(Q(t+1)=x-1 \mid Q(t)=x)=1-p$ for some $0<p<1$.

1. Construct a function of the state $\phi(x), x \in \mathbb{Z}$ such that $\phi(Q(t))$ is a martingale.
2. Suppose $Q(0)=z>0$ and $p>1 / 2$. Compute the probability that the random walk never hits 0 in terms of z, p.

Problem 5. On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consider a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$ and σ-fields $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n} \subset \mathcal{F}$ such that $\mathbb{E}\left[X_{j} \mid \mathcal{F}_{j-1}\right]=$ X_{j-1} and $\mathbb{E}\left[X_{j}^{2}\right]<\infty$.

1. Prove directly (without using Jensen's inequality) that $\mathbb{E}\left[X_{j}^{2}\right] \geq \mathbb{E}\left[X_{j-1}^{2}\right]$ for all $j=2, \ldots, n$. Hint: consider $\left(X_{j}-X_{j-1}\right)^{2}$.
2. Suppose $X_{n}=X_{1}$ almost surely. Prove that in this case $X_{1}=\ldots=X_{n}$ almost surely.

Problem 6. The purpose of this exercise is to extend some of the stopping times theory to processes which are (semi)-continuous. Suppose X_{t} is a continuous time submartingale adopted to $\mathcal{F}_{t}, t \in \mathbb{R}_{+}$and T is a stopping time taking values in $\mathbb{R} \cup\{\infty\}$. Suppose additionally that X_{t} is a.s. a right-continuous function with left limits (RCLL).
(a) Suppose there exists a countably infinite strictly increasing sequence $t_{n} \in$ $\mathbb{R}_{+}, n \geq 0$, such that $\mathbb{P}\left(T \in\left\{t_{n}, n \geq 0\right\} \cup\{\infty\}\right)=1$. Emulate the proof of the discrete time processes to show that $X_{t \wedge T}, t \in \mathbb{R}_{+}$is a submartingale.
(b) Given a general stopping time T taking values in $\mathbb{R}_{+} \cup\{\infty\}$, consider a sequence of r.v. T_{n} defined by $T_{n}(\omega)=\frac{k}{2^{n}}, k=1,2, \ldots$ if $T(\omega) \in$ $\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right]$ and $T_{n}(\omega)=\infty$ if $T(\omega)=\infty$. Establish that T_{n} is a stopping time for every n.
(c) Suppose the submartingale X_{t} is in \mathbb{L}_{2}, namely $\mathbb{E}\left[X_{t}^{2}\right]<\infty, \forall t$. Show that $X_{T \wedge t}$ is a submartingale as well.
Hint: Use part (b), Doob-Kolmogorov inequality and the Dominated Convergence Theorem.

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

