MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Martingale Convergence Theorem

Content.

1. Martingale Convergence Theorem
2. Doob's Inequality Revisited
3. Martingale Convergence in \mathbb{L}_{p}
4. Backward Martingales. SLLN Using Backward Martingale
5. Hewitt-Savage $0-1$ Law
6. De-Finetti's Theorem

1 Martingale Convergence Theorem

Theorem 1. (Doob) Suppose X_{n} is a super-martingale which satisfies

$$
\sup _{n} \mathbb{E}\left[\left|X_{n}\right|\right]<\infty
$$

Then, almost surely $X_{\infty}=\lim _{n} X_{n}$ exists and is finite in expectation. That is, define $X_{\infty}=\lim \sup X_{n}$. Then $X_{n} \rightarrow X_{\infty}$ a.s. and $\mathbb{E}\left[\left|X_{\infty}\right|\right]<\infty$.

Proof. The proof relies "Doob's Upcrossing Lemma". For that consider

$$
\begin{align*}
\Lambda & \triangleq\left\{\omega: X_{n}(\omega) \text { does not converge to a limit in } \mathbb{R}\right\} \\
& =\left\{\omega: \lim _{n} \inf X_{n}(\omega)<\limsup _{n} X_{n}(\omega)\right\} \\
& =\cup_{a<b: a, b \in \mathbb{Q}}\left\{\omega: \lim _{n} \inf _{n} X_{n}(\omega)<a<b<\limsup _{n} X_{n}(\omega)\right\}, \tag{1}
\end{align*}
$$

where \mathbb{Q} is the set of rational values. Let, $U_{N}[a, b](\omega)=$ largest k such that it satisfies the following: there exists

$$
0 \leq s_{1}<t_{1}<\ldots<s_{k}<t_{k} \leq N
$$

such that

$$
X_{s_{i}}(\omega)<a<b<X_{t_{i}}(\omega), \quad 1 \leq i \leq k .
$$

That is, $U_{N}[a, b]$ is the number of up-crossings of $[a, b]$ up to N. Clearly, $U_{N}[a, b](\omega)$ is non-decreasing in N. Let $U_{\infty}[a, b](\omega)=\lim _{N \rightarrow \infty} U_{N}[a, b](\omega)$. Then (1) can be re-written as

$$
\begin{align*}
\Lambda & =\cup_{a<b: a, b \in \mathbb{Q}}\left\{\omega: U_{\infty}[a, b](\omega)=\infty\right\} \\
& =\cup_{a<b: a, b \in \mathbb{Q}} \Lambda_{a, b} . \tag{2}
\end{align*}
$$

Doob's upcrossing lemma proves that $\mathbb{P}\left(\Lambda_{a, b}\right)=0$ for every $a<b$. Then we have from (2) that $\mathbb{P}(\Lambda)=0$. Thus, $X_{n}(\omega)$ converges in $[-\infty, \infty]$ a.s. That is,

$$
X_{\infty}=\lim _{n} X_{n} \text { exists a.s. }
$$

Now,

$$
\begin{aligned}
\mathbb{E}\left[\left|X_{\infty}\right|\right] & =\mathbb{E}\left[\liminf _{n}\left|X_{n}\right|\right] \\
& \leq \liminf _{n} \mathbb{E}\left[\left|X_{n}\right|\right] \\
& \leq \sup _{n} \mathbb{E}\left[\left|X_{n}\right|\right]<\infty
\end{aligned}
$$

where we have used Fatou's Lemma in the first inequality. Thus, X_{∞} is in \mathbb{L}_{1}. In particular, X_{∞} is finite a.s. This completes the proof of Theorem 5 (with Doob's upcrossing Lemma and its application $P\left(\Lambda_{a, b}\right)=0$ remaining to be proved.)

Lemma 1. (Doob's Upcrossing) Let X_{n} be a super-MG. Let $U_{N}[a, b]$ be the number of upcrossing of $[a, b]$ until time N with $a<b$. Then,

$$
(b-a) \mathbb{E}\left[U_{N}[a, b]\right] \leq \mathbb{E}\left[\left(X_{N}-a\right)^{-}\right]
$$

where

$$
\left(X_{N}-a\right)^{-}= \begin{cases}a-X_{N}, & \text { if } X_{N} \leq a \\ 0, & \text { otw } .\end{cases}
$$

Proof. Define a predictable sequence C_{n} as follows.

$$
C_{1}(\omega)= \begin{cases}1, & \text { if } X_{0}(\omega)<a \\ 0, & \text { otw }\end{cases}
$$

Inductively,

$$
C_{n}(\omega)= \begin{cases}1, & \text { if } C_{n-1}(\omega)=1 \text { and } X_{n-1}(\omega) \leq b \\ 1, & \text { if } C_{n-1}(\omega)=0 \text { and } X_{n-1}(\omega)<a \\ 0, & \text { otw. }\end{cases}
$$

By definition, C_{n} is predictable. The sequence C_{n} has the following property. If $X_{0}<a$ then $C_{1}=1$. Then the sequence C_{n} remains equal to 1 until the first time X_{n} exceeds b. It then remains zero until the first time it becomes smaller than a at which point it switches back to 1 , etc. If instead $X_{0}>a$, then $C_{1}=0$ and it remains zero until the first time X_{n} becomes smaller than a, at which point C_{n} switches to 1 and then continues as above. Consider

$$
Y_{n}=(C \cdot X)_{n}=\sum_{1 \leq k \leq n} C_{k}\left(X_{k}-X_{k-1}\right)
$$

We claim that

$$
Y_{N}(\omega) \geq(b-a) U_{N}[a, b]-\left(X_{N}(\omega)-a\right)^{-}
$$

Let $U_{N}[a, b]=k$. Then there is $0 \leq s_{1}<t_{1}<\cdots<s_{k}<t_{k} \leq N$ such that $X_{s_{i}}(\omega)<a<b<X_{t_{i}}(\omega), i=1, \cdots, k$. By definition, $C_{s_{i}+1}=1$ for all $i \geq 1$. Further, $C_{t}(\omega)=1$ for $s_{i}+1 \leq t \leq l_{i} \leq t_{i}$ where $l_{i} \leq t_{i}$ is the smallest time $t \geq s_{i}$ such that $X_{t}(\omega)>b$. Without the loss of generality, assume that $s_{1}=\min \left\{n: X_{n}<a\right\}$. Let, $s_{k+1}=\min \left\{n>t_{k}: X_{n}(\omega)<a\right\}$. Then,

$$
\begin{aligned}
Y_{N}(\omega)= & \sum_{j \leq N} C_{j}(\omega)\left(X_{j}(\omega)-X_{j-1}(\omega)\right) \\
= & \sum_{1 \leq i \leq k}\left[\sum_{s_{i} \leq t \leq l_{i}} C_{t+1}(\omega)\left(X_{t+1}(\omega)-X_{t}(\omega)\right)\right] \\
& \left.+\sum_{t \geq s_{k+1}} C_{t+1}(\omega)\left(X_{t+1}(\omega)-X_{t}(\omega)\right) \text { (Because otherwise } C_{t}(\omega)=0 .\right) \\
= & \sum_{1 \leq i \leq k}\left(X_{l_{i}}(\omega)-X_{s_{i}}(\omega)\right)+X_{N}(\omega)-X_{s_{k+1}}(\omega)
\end{aligned}
$$

where the term $X_{N}(\omega)-X_{s_{k+1}}(\omega)$ is defined to be zero if $s_{k+1}>N$. Now, $X_{l_{i}}(\omega)-X_{s_{i}}(\omega) \geq b-a$. Now if $X_{N}(\omega) \geq X_{s_{k+1}}$ then

$$
X_{N}(\omega)-X_{s_{k+1}} \geq 0
$$

Otherwise

$$
\left|X_{N}(\omega)-X_{s_{k+1}(\omega)}\right| \leq\left|X_{N}(\omega)-a\right|
$$

Therefore we have

$$
Y_{N}(\omega) \geq U_{N}[a, b](b-a)-\left(X_{N}(\omega)-a\right)^{-}
$$

as claimed.
Now, as we have established earlier, $Y_{n}=(C \cdot X)_{n}$ is super-MG since $C_{n} \geq 0$ is predictable. That is,

$$
\mathbb{E}\left[Y_{N}\right] \leq \mathbb{E}\left[Y_{0}\right]=0
$$

By claim,

$$
(b-a) \mathbb{E}\left[U_{N}[a, b]\right] \leq \mathbb{E}\left[\left(X_{N}-a\right)^{-}\right]
$$

This completes the proof of Doob's Lemma.
Next, we wish to use this to prove $\mathbb{P}\left(\Lambda_{a, b}\right)=0$.
Lemma 2. For any $a<b, \mathbb{P}\left(\Lambda_{a, b}\right)=0$.
Proof. By definition $\Lambda_{a, b}=\left\{\omega: U_{\infty}[a, b]=\infty\right\}$. Now by Doob's Lemma

$$
\begin{aligned}
(b-a) \mathbb{E}\left[U_{N}[a, b]\right] & \leq \mathbb{E}\left[\left(X_{N}-a\right)^{-}\right] \\
& \leq \sup _{n} \mathbb{E}\left[\left|X_{n}\right|\right]+|a| \\
& <\infty
\end{aligned}
$$

Now, $U_{N}[a, b] \nearrow U_{\infty}[a, b]$. Hence by the Monotone Convergence Theorem, $\mathbb{E}\left[U_{N}[a, b]\right] \nearrow \mathbb{E}\left[U_{\infty}[a, b]\right]$. That is, $\mathbb{E}\left[U_{\infty}[a, b]\right]<\infty$. Hence, $\mathbb{P}\left(U_{\infty}[a, b]=\right.$ $\infty)=0$.

2 Doob's Inequality

Theorem 2. Let X_{n} be a sub-MG and let $X_{n}^{*}=\max _{0 \leq m \leq n} X_{m}^{+}$. Given $\lambda>0$, let $A=\left\{X_{n}^{*} \geq \lambda\right\}$. Then,

$$
\lambda \mathbb{P}(A) \leq \mathbb{E}\left[X_{n} \mathbf{1}(A)\right] \leq \mathbb{E}\left[X_{n}^{+}\right]
$$

Proof. Define stopping time

$$
N=\min \left\{m: X_{m}^{*} \geq \lambda \text { or } m=n\right\}
$$

Thus, $\mathbb{P}(N \leq n)=1$. Now, by the Optional Stopping Theorem we have that $X_{N \wedge n}$ is a sub-MG. But $X_{N \wedge n}=X_{N}$. Thus

$$
\begin{equation*}
\mathbb{E}\left[X_{N}\right] \leq \mathbb{E}\left[X_{n}\right] \tag{3}
\end{equation*}
$$

We have

$$
\begin{align*}
\mathbb{E}\left[X_{N}\right] & =\mathbb{E}\left[X_{N} \mathbf{1}(A)\right]+\mathbb{E}\left[X_{N} \mathbf{1}\left(A^{c}\right)\right] \\
& =\mathbb{E}\left[X_{N} \mathbf{1}(A)\right]+\mathbb{E}\left[X_{n} \mathbf{1}\left(A^{c}\right)\right] \tag{4}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{n} \mathbf{1}(A)\right]+\mathbb{E}\left[X_{n} \mathbf{1}\left(A^{c}\right)\right] \tag{5}
\end{equation*}
$$

From (3)~ (5), we have

$$
\begin{equation*}
\mathbb{E}\left[X_{N} \mathbf{1}(A)\right] \leq \mathbb{E}\left[X_{n} \mathbf{1}(A)\right] \tag{6}
\end{equation*}
$$

But

$$
\begin{equation*}
\lambda \mathbb{P}(A) \leq \mathbb{E}\left[X_{N} \mathbf{1}(A)\right] \tag{7}
\end{equation*}
$$

From (6) and (7),

$$
\begin{align*}
\lambda \mathbb{P}(A) & \leq \mathbb{E}\left[X_{n} \mathbf{1}(A)\right] \\
& \leq \mathbb{E}\left[X_{n}^{+} \mathbf{1}(A)\right] \\
& \leq \mathbb{E}\left[X_{n}^{+}\right] . \tag{8}
\end{align*}
$$

Suppose, X_{n} is non-negative sub-MG. Then,

$$
\mathbb{P}\left(\max _{0 \leq k \leq n} X_{k} \geq \lambda\right) \leq \frac{1}{\lambda} \mathbb{E}\left[X_{n}\right]
$$

If it were MG, then we also obtain

$$
\mathbb{P}\left(\max _{0 \leq k \leq n} X_{k} \geq \lambda\right) \leq \frac{1}{\lambda} \mathbb{E}\left[X_{n}\right]=\frac{1}{\lambda} \mathbb{E}\left[X_{0}\right]
$$

$3 L^{p}$ maximal inequality and L^{p} convergence

Theorem 3. Let, X_{n} be a sub-MG. Suppose $\mathbb{E}\left[\left(X_{n}^{+}\right)^{p}\right]<\infty$ for some $p>1$. Then,

$$
\mathbb{E}\left[\left(\max _{0 \leq k \leq n} X_{k}^{+}\right)^{p}\right]^{\frac{1}{p}} \leq q \mathbb{E}\left[\left(X_{n}^{+}\right)^{p}\right]^{\frac{1}{p}}
$$

where $\frac{1}{q}+\frac{1}{p}=1$. In particular, if X_{n} is a $M G$ then $\left|X_{n}\right|$ is a sub-MG and hence

$$
\mathbb{E}\left[\left(\max _{0 \leq k \leq n}\left|X_{k}\right|\right)^{p}\right]^{\frac{1}{p}} \leq q \mathbb{E}\left[\left|X_{n}\right|^{p}\right]^{\frac{1}{p}}
$$

Before we state the proof, an important application is
Theorem 4. If X_{n} is a martingale with $\sup _{n} \mathbb{E}\left[\left|X_{n}\right|^{p}\right]<\infty$ where $p>1$, then $X_{n} \rightarrow X$ a.s. and in L^{p}, where $X=\lim \sup _{n} X_{n}$.

We will first prove Theorem 4 and then Theorem 3.
Proof. (Theorem 4) Since $\sup _{n} \mathbb{E}\left[\left|X_{n}\right|^{p}\right]<\infty, p>1$, by MG-convergence theorem, we have that

$$
X_{n} \rightarrow X \text {, a.s., where } X=\underset{n}{\limsup } X_{n} \text {. }
$$

For L^{p} convergence, we will use L^{p}-inequality of Theorem 3. That is,

$$
\mathbb{E}\left[\left(\sup _{0 \leq m \leq n}\left|X_{m}\right|\right)^{p}\right] \leq q^{p} \mathbb{E}\left[\left|X_{n}\right|^{p}\right]
$$

Now, $\sup _{0 \leq m \leq n}\left|X_{m}\right| \nearrow \sup _{0 \leq m}\left|X_{m}\right|$. Therefore, by the Monotone Convergence Theorem we obtain that

$$
\mathbb{E}\left[\sup _{0 \leq m}\left|X_{m}\right|^{p}\right] \leq q^{p} \sup _{n} \mathbb{E}\left[\left|X_{n}\right|^{p}\right]<\infty
$$

Thus, $\sup _{0 \leq m}\left|X_{m}\right| \in L^{p}$. Now,

$$
\left|X_{n}-X\right| \leq 2 \sup _{0 \leq m}\left|X_{m}\right|
$$

Therefore, by the Dominated Convergence Theorem $\mathbb{E}\left[\left|X_{n}-X\right|^{p}\right] \rightarrow 0$.
Proof. (Theorem 3) We will use truncation of X_{n}^{*} to prove the result. Let M be the truncation parameter: $X_{n}^{*, M}=\min \left(X_{n}^{*}, M\right)$. Now, consider the following:

$$
\begin{aligned}
\mathbb{E}\left[\left(X_{n}^{*, M}\right)^{p}\right] & =\int_{0}^{\infty} p \lambda^{p-1} \mathbb{P}\left(X_{n}^{*, M} \geq \lambda\right) d \lambda \\
& \leq \int_{0}^{\infty} p \lambda^{p-1}\left[\frac{1}{\lambda} \mathbb{E}\left[X_{n}^{+} \mathbf{1}\left(X_{n}^{*, M} \geq \lambda\right)\right]\right] d \lambda
\end{aligned}
$$

The above inequality follows from

$$
\mathbb{P}\left(X_{n}^{*, M} \geq \lambda\right)= \begin{cases}0, & \text { if } M<\lambda \\ \mathbb{P}\left(X_{n}^{*} \geq \lambda\right), & \text { if } M \geq \lambda\end{cases}
$$

and Theorem 2. By an application of Fubini for non-negative integrands, we have

$$
\begin{align*}
& p \mathbb{E}\left[X_{n}^{+} \int_{0}^{X_{n}^{*, M}} \lambda^{p-2} d \lambda\right] \\
& =\frac{p}{p-1} \mathbb{E}\left[X_{n}^{+}\left(X_{n}^{*, M}\right)^{p-1}\right] \\
& \leq \frac{p}{p-1} \mathbb{E}\left[\left(X_{n}^{+}\right)^{p}\right]^{\frac{1}{p}} \mathbb{E}\left[\left(X_{n}^{*, M}\right)^{(p-1) q}\right]^{\frac{1}{q}}, \text { by Holder's inequality. } \tag{9}
\end{align*}
$$

Here, $\frac{1}{q}=1-\frac{1}{p} \Rightarrow q(p-1)=p$. Thus, we can simplify (9)

$$
=q \mathbb{E}\left[\left(X_{n}^{+}\right)^{p}\right]^{\frac{1}{p}} \mathbb{E}\left[\left(X_{n}^{*, M}\right)^{p}\right]^{\frac{1}{q}}
$$

Thus,

$$
\left\|X_{n}^{*, M}\right\|_{p}^{p} \leq q\left\|X_{n}^{+}\right\|_{p}\left\|X_{n}^{*, M}\right\|_{p}^{\frac{p}{q}}
$$

That is,

$$
\left\|X_{n}^{*, M}\right\|_{p}^{p\left(1-\frac{1}{q}\right)} \leq q\left\|X_{n}^{+}\right\|_{p}
$$

Hence, $\left\|X_{n}^{*, M}\right\|_{p} \leq q\left\|X_{n}^{+}\right\|_{p}$.

4 Backward Martingale

Let \mathcal{F}_{n} be increasing sequence of σ-algebra, $n \leq 0$, such that $\cdots \subset \mathcal{F}_{-3} \subset$ $\mathcal{F}_{-2} \subset \mathcal{F}_{-1} \subset F_{0}$. Let X_{n} be \mathcal{F}_{n} adapted, $n \leq 0$, and

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}, n<0
$$

Then X_{n} is called backward MG.
Theorem 5. Let X_{n} be backward MG. Then

$$
\lim _{n \rightarrow-\infty} X_{n}=X_{-\infty} \text { exists a.s. and in } L^{1} .
$$

Compare with standard MG convergence results:
(a): We need $\sup E\left[\left|X_{n}\right|\right]<\infty$, or non-negative MG in Doob's convergence theorem, which gives a.s. convergence not L^{1}.
(b): For L^{1}, we need UI. And, it is necessary because if $X_{n} \rightarrow X_{\text {infty }}$ a.s. and L^{1} then there exists $X \in F_{\infty}$ s.t. $X_{n}=\mathbb{E}\left[X \mid F_{n}\right]$; and hence X_{n} is UI.

Proof of Theorem 5. Recall Doob's convergence theorem's proof. Let

$$
\begin{aligned}
\Lambda: & =\left\{\omega: X_{n}(\omega) \text { does not converge to a limit in }[-\infty, \infty]\right\} \\
& =\left\{\omega: \lim _{n} \inf X_{n}(\omega)<\limsup _{n} X_{n}(\omega)\right\} \\
& =\cup_{a, b: a, b \in \mathcal{Q}}\left\{\omega: \liminf _{n} X_{n}(\omega)<a<b<\limsup _{n} X_{n}(\omega)\right\} \\
& =\cup_{a, b: a, b \in \mathcal{Q}} \Lambda_{a, b}
\end{aligned}
$$

Now, recall $U_{n}[a, b]$ is the number of upcrossing of $[a, b]$ in $X_{n}, X_{n+1}, \ldots, X_{0}$ as $n \rightarrow-\infty$. By upcrossing inequality, it follows that

$$
(b-a) \mathbb{E}\left[U_{n}[a, b]\right] \leq \mathbb{E}\left[\left|X_{0}\right|\right]+|a|
$$

Since $U_{n}[a, b] \nearrow U_{\infty}[a, b]$ and By monotone convergence theorem, we have

$$
\mathbb{E}\left[U_{\infty}[a, b]\right]<\infty \Rightarrow \mathbb{P}\left(\Lambda_{a, b}\right)=0
$$

This implies X_{n} converges a.s.
Now, $X_{n}=\mathbb{E}\left[X_{0} \mid F_{n}\right]$. Therefore, X_{n} is UI. This implies $X_{n} \rightarrow X_{-\infty}$ in L^{1}.

Theorem 6. If $X_{-\infty}=\lim _{n \rightarrow-\infty} X_{n}$ and $\mathcal{F}_{-\infty}=\cap_{n} \mathcal{F}_{n}$. Then $X_{-\infty}=$ $\mathbb{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right]$.

Proof. Let $X_{n}=\mathbb{E}\left[X_{0} \mid \mathcal{F}_{n}\right]$. If $A \in \mathcal{F}_{-\infty} \subset \mathcal{F}_{n}$, then $\mathbb{E}\left[X_{n} ; A\right]=\mathbb{E}\left[X_{0} ; A\right]$. Now,

$$
\begin{aligned}
\left|\mathbb{E}\left[X_{n} ; A\right]-\mathbb{E}\left[X_{-\infty} ; A\right]\right| & =\left|\mathbb{E}\left[X_{n}-X_{-\infty} ; A\right]\right| \\
& \leq \mathbb{E}\left[\left|X_{n}-X_{-\infty}\right| ; A\right] \\
& \leq \mathbb{E}\left[\left|X_{n}-X_{-\infty}\right|\right] \rightarrow 0 \text { as } n \rightarrow-\infty(\text { by Theorem } 5)
\end{aligned}
$$

Hence, $\mathbb{E}\left[X_{-\infty} ; A\right]=\mathbb{E}\left[X_{0} ; A\right]$. Thus, $X_{-\infty}=\mathbb{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right]$.
Theorem 7. Let $\mathcal{F}_{n} \searrow \mathcal{F}_{-\infty}$, and $Y \in L^{1}$. Then, $\mathbb{E}\left[Y \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[Y \mid \mathcal{F}_{-\infty}\right]$ a.s. in L^{1}.

Proof. $X_{n}=\mathbb{E}\left[Y \mid \mathcal{F}_{n}\right]$ is backward MG by definition. Therefore,

$$
X_{n} \rightarrow X_{-\infty} \text { a.s. and in } L^{1}
$$

By Theorem 6, $X_{-\infty}=\mathbb{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right]=\mathbb{E}\left[Y \mid \mathcal{F}_{-\infty}\right]$. Thus, $\mathbb{E}\left[Y \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[Y \mid \mathcal{F}_{-\infty}\right]$.

5 Strong Law of Large Number

Theorem 8 (SLLN). Let ξ be i.i.d. with $\mathbb{E}\left[\left|\xi_{i}\right|\right]<\infty$. Let $S_{n}=\xi_{1}+\ldots+\xi_{n}$. Let $X_{-n}=\frac{S_{n}}{n}$. And, $\mathcal{F}_{-n}=\sigma\left(S_{n}, \xi_{n+1}, \ldots\right)$. Then,

$$
\begin{aligned}
\mathbb{E}\left[X_{-n} \mid \mathcal{F}_{-n-1}\right] & =\mathbb{E}\left[\left.\frac{S_{n}}{n} \right\rvert\, \mathcal{F}_{-n-1}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\xi_{i} \mid S_{n+1}\right] \\
& =\mathbb{E}\left[\xi_{1} \mid S_{n+1}\right] \\
& =\frac{1}{n+1} S_{n+1} \\
& =X_{-n+1}
\end{aligned}
$$

Then X_{-n} is backward $M G$.
Proof. By Theorem 5~7, we have $X_{-n} \rightarrow X_{-\infty}$ a.s. and in L^{1}, with $X_{-\infty}=$ $\mathbb{E}\left[\xi_{1} \mid \mathcal{F}_{-\infty}\right]$. Now $\mathcal{F}_{-\infty}$ is in ξ (the exchangeable σ-algebra). By Hewitt-Savage (proved next) 0-1 law, ξ is trivial. That is, $\mathbb{E}\left[\xi_{1} \mid \mathcal{F}_{-\infty}\right]$ is a constant. Therefore, $\mathbb{E}\left[X_{-\infty}\right]=\mathbb{E}\left[\xi_{1}\right]$ is also a constant. Thus,

$$
X_{-\infty}=\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=\mathbb{E}\left[\xi_{1}\right]
$$

6 Hewitt-Savage 0-1 Law

Theorem 9. Let X_{1}, \ldots, X_{n} be i.i.d. and ξ be the exchangeable $\sigma-$ algebra:

$$
\xi_{n}=\left\{A: \pi_{n} A=A ; \forall \pi_{n} \in S_{n}\right\} ; \quad \xi=\cup_{n} \xi_{n}
$$

If $A \in \xi$, then $\mathbb{P}(A) \in\{0,1\}$.
Proof. The key to the proof is the following Lemma:
Lemma 3. Let X_{1}, \ldots, X_{k} be i.i.d. and define

$$
A_{n}(\phi)=\frac{1}{n_{p_{k}}} \sum_{\left(i_{1}, \ldots, i_{k}\right) \in\{1, \ldots, n\}} A_{n}\left(\phi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)\right)
$$

If ϕ is bounded then

$$
A_{n}(\phi) \rightarrow \mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{k}\right)\right] \text { a.s. }
$$

Proof. $A_{n}(\phi) \in \xi_{n}$ by definition. So

$$
\begin{align*}
A_{n}(\phi) & =\mathbb{E}\left[A_{n}(\phi) \mid \xi_{n}\right] \\
& =\frac{1}{n_{p_{k}}} \sum_{i_{1}, \ldots, i_{k}} \mathbb{E}\left[\phi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \mid \xi_{n}\right] \\
& =\frac{1}{n_{p_{k}}} \sum_{i_{1}, \ldots, i_{k}} \mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{k}\right) \mid \xi_{n}\right] \\
& =\mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{k}\right) \mid \xi_{n}\right] \tag{10}
\end{align*}
$$

Let $\mathcal{F}_{-n}=\xi_{n}$. Then $\mathcal{F}_{-n} \quad \mathcal{F}_{-\infty}=\xi$. Then, for $Y=\phi\left(X_{1}, \ldots, X_{k}\right)$. $\mathbb{E}\left[Y \mid \mathcal{F}_{-n}\right]$ is backward MG. Therefore,

$$
\mathbb{E}\left[Y \mid \mathcal{F}_{-n}\right] \rightarrow \mathbb{E}\left[Y \mid \mathcal{F}_{-\infty}\right]=\mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{k}\right) \mid \xi\right]
$$

Thus,

$$
\begin{equation*}
A_{n}(\phi) \rightarrow \mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{k}\right) \mid \xi\right] \tag{11}
\end{equation*}
$$

We want to show that indeed $\mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right) \mid \xi\right]$ is $\mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right)\right]$.
First, we show that $\mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right) \mid \xi\right] \in \sigma\left(X_{k+1}, \ldots\right)$ since ϕ is bounded. Then, we find that if $\mathbb{E}[X \mid \mathcal{G}] \in \mathcal{F}$ where X is independent of \mathcal{F} then $\mathbb{E}[X \mid \mathcal{G}]$ is constant, equal to $\mathbb{E}[X]$. This will complete the proof of Lemma.

First step: consider $A_{n}(\phi)$. It has $n_{p_{k}}$ terms in which there are $k(n-1)_{p_{k-1}}$ terms containing X_{1}. Therefore, the effect of terms containing X_{1} is:

$$
\begin{align*}
T_{n}(1) & \equiv \frac{1}{n_{p_{k}}} \sum_{\left(i_{1}, \ldots, i_{k}\right)} \phi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \leq \frac{1}{n_{p_{k}}} k\left((n-1)_{p_{k-1}}\right)\|\phi\|_{\infty} \\
& =\frac{(n-k)!}{n!} k \frac{(n-1)!}{(n-k)!}\|\phi\|_{\infty} \\
& =\frac{k}{n}\|\phi\|_{\infty} \rightarrow 0 \text { as } n \rightarrow \infty \tag{12}
\end{align*}
$$

Let $A_{n}^{-1}(\phi)=A_{n}(\phi)-T_{n}(1)$. Then, we have $A_{n}^{-1}(\phi) \rightarrow \mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right) \mid \xi\right]$ from (11) and (12). Thus, $\mathbb{E}\left[\phi\left(\phi\left(X_{1}, \ldots, X_{n}\right)\right) \mid \xi\right]$ is independent on X_{1}. Similarly, repeating argument for X_{2}, \ldots, X_{k} we obtain that

$$
\mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right) \mid \xi\right] \in \sigma\left(X_{n+1}, \ldots\right)
$$

Second step: if $\mathbb{E}\left[X^{2}\right] \leq \infty, \mathbb{E}[X \mid \mathcal{G}] \in \mathcal{F}, X$ is independent of \mathcal{F} then $\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X]$.

Proof. Let $Y=\mathbb{E}[X \mid \mathcal{G}]$. Now $Y \in \mathcal{F}$ and X is independent on \mathcal{F}_{1} we have that

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]=\mathbb{E}[Y]^{2}
$$

, since $\mathbb{E}[Y]=\mathbb{E}[X]$. Now by definition of conditional expectation for any $Z \in \mathcal{G}, E[X Z]=E[Y Z]$. Hence, for $Z=Y$, we have $\mathbb{E}[X Y]=\mathbb{E}\left[Y^{2}\right]$. Thus,

$$
\begin{align*}
\mathbb{E}\left[Y^{2}\right]=\mathbb{E}[Y]^{2} & \Rightarrow \operatorname{Var}(Y)=0 \\
& \Rightarrow Y=\mathbb{E}[Y] \text { a.s. } \tag{13}
\end{align*}
$$

This completes the proof of the Lemma.
Now completing proof of H-S law.
We have proved that $A_{n}(\phi) \rightarrow \mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right)\right]$ a.s. for all bounded ϕ dependent on finitely many components.

By the first step, ξ is independent on $\mathcal{G}_{k}=\sigma\left(X_{1}, \ldots, X_{k}\right)$. This is true for all $k . \cup_{k} \mathcal{G}_{k}$ is a π-system which contains Ω. Therefore, ξ is independent of $\sigma\left(\cup_{k} \mathcal{G}_{k}\right)$ and $\xi \subset \sigma\left(\cup_{k} \mathcal{G}_{k}\right)$. Thus, for all $A \in \xi, A$ is independent of itself. Hence,

$$
\mathbb{P}(A \cap A)=\mathbb{P}(A) \mathbb{P}(A) \Rightarrow P(A) \in\{0,1\} .
$$

7 De Finetti's Theorem

Theorem 10. Given X_{1}, X_{2}, \ldots sequence of exchangeable, that is, for any n and $\pi_{n} \in S_{n},\left(X_{1}, \ldots, X_{n}\right) \triangleq\left(X_{\pi_{n}(1)}, \ldots, X_{\pi_{n}(n)}\right)$, then conditional on ξ, $X_{1}, \ldots, X_{n}, \ldots$ are i.i.d.

Proof. As in H-S's proof and Lemma, define $A_{n}(\phi)=\frac{1}{n_{p_{k}}} \sum_{\left(i_{1}, \ldots, i_{k}\right)} \phi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right)$. Then, due to exchangeability,

$$
\begin{align*}
A_{n}(\phi) & =\mathbb{E}\left[A_{n}(\phi) \mid \xi_{n}\right]=\mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right) \mid \xi_{n}\right] \\
& \rightarrow \mathbb{E}\left[\phi\left(X_{1}, \ldots, X_{n}\right) \mid \xi\right] \text { by backward MG convergence theorem. } \tag{14}
\end{align*}
$$

Since X_{1}, \ldots may not be i.i.d., ξ can be nontrivial. Therefore, the limit need not be constant. Consider a $f: \mathbb{R}^{k-1} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. Let $I_{n, k}$ be set of all
distinct $1 \leq i_{1}, \ldots, i_{k} \leq n$, then

$$
\begin{align*}
& n_{p_{k-1}} A_{n}(f) n A_{n}(g) \\
& =\sum_{i \in I_{n, k-1} f\left(X_{i_{1}}, \ldots, X_{i_{k-1}}\right)} \sum_{m \leq n} g\left(X_{m}\right) \\
& =\sum_{i \in I_{n, k}} f\left(X_{i}, \ldots, X_{i_{k-1}}\right) g\left(X_{i_{k}}\right)+\sum_{i \in I_{n, k-1}}\left[f\left(X_{i_{1}}, \ldots, X_{i_{k-1}}\right) \sum_{j=1}^{k-1} g\left(X_{i_{j}}\right)\right] \tag{15}
\end{align*}
$$

Let $\phi_{j}\left(X_{1}, \ldots, X_{k-1}\right)=f\left(X_{1}, \ldots, X_{k-1}\right) g\left(X_{j}\right), 1 \leq j \leq k-1$ and $\phi\left(X_{1}, \ldots, X_{k}\right)=$ $f\left(X_{1}, \ldots, X_{k-1}\right) g\left(X_{k}\right)$. Then,

$$
n_{p_{k-1}} A_{n}(f) n A_{n}(g)=n_{p_{k}} A_{n}(\phi)+n_{p_{k-1}} \sum_{j=1}^{k-1} A_{n}\left(\phi_{j}\right)
$$

Dividing by $n_{p_{k}}$, we have

$$
\frac{n}{n-k+1} A_{n}(f) A_{n}(g)=A_{n}(\phi)+\frac{1}{n-k+1} \sum_{j=1}^{k} A_{n}\left(\phi_{j}\right)
$$

by 15 , and fact that $\|f\|_{\infty},\|g\|_{\infty}<\infty$, we have

$$
\begin{equation*}
\mathbb{E}\left[f\left(X_{1}, \ldots, X_{k-1} \mid \xi\right)\right] \mathbb{E}\left[g\left(X_{1}\right) \mid \xi\right]=\mathbb{E}\left[f\left(X_{1}, \ldots, X_{k-1}\right) g\left(X_{k}\right) \mid \xi\right] \tag{16}
\end{equation*}
$$

Thus, we have using (16) that for any collection of bounded functions f_{1}, \ldots, f_{k},

$$
\mathbb{E}\left[\prod_{i=1}^{k} f_{i}\left(X_{i}\right) \mid \xi\right]=\prod_{i=1}^{k} \mathbb{E}\left[f_{i}\left(X_{i}\right) \mid \xi\right]
$$

Message: given the "symmetry" assumption and given "exchangeable" statistics, the underlying r.v. conditionally become i.i.d.!

A nice example. Let X_{i} be exchangeable r.v.s. taking values in $\{0,1\}$. Then there exists distributions on $[0,1]$ with distribution function F s.t.

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}=k\right)=\int_{0}^{1} \theta^{k}(1-\theta)^{n-k} d F(\theta)
$$

for all n. That is, mixture of i.i.d. r.v.

References

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

