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1 Conditional Expectations 

1.1 Definition 

Recall how we define conditional expectations. Given a random variable X and 
E[X1{A}]an event A we define E[X|A] = .P(A) 

Also we can consider conditional expectations with respect to random vari
ables. For simplicity say Y is a simple random variable on Ω taking values 
y1, y2, . . . , yn with some probabilities 

P(ω : Y (ω) = yi) = pi. 

Now we define conditional expectation E[X|Y ] as a random variable which 
takes value E[X|Y = yi] with probability pi, where E[X|Y = yi] should be 
understood as expectation of X conditioned on the event {ω ∈ Ω : Y (ω) = yi}. 

It turns out that one can define conditional expectation with respect to a σ
field. This notion will include both conditioning on events and conditioning on 
random variables as special cases. 

Definition 1. Given Ω, two σ-fields G ⊂ F on Ω, and a probability measure P 
on (Ω, F). Suppose X is a random variable with respect to F but not necessar
ily with respect to G, and suppose X has a finite L1 norm (that is E[|X|] < ∞). 
The conditional expectation E[X|G] is defined to be a random variable Y which 
satisfies the following properties: 

(a) Y is measurable with respect to G. 
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(b) For every A ∈ G, we have E[X1{A}] = E[Y 1{A}]. 

For simplicity, from now on we write Z ∈ F to indicate that Z is measurable 
with respect to F . Also let F(Z) denote the smallest σ-field such with respect 
to which Z is measurable. 

Theorem 1. The conditional expectation E[X|G] exists and is unique. 

Uniqueness means that if Y ' ∈ G is any other random variable satisfying 
conditions (a),(b), then Y ' = Y a.s. (with respect to measure P). We will prove 
this theorem using the notion of Radon-Nikodym derivative, the existence of 
which we state without a proof below. But before we do this, let us develop 
some intuition behind this definition. 

1.2 Simple properties 

•	 Consider the trivial case when G = {Ø, Ω}. We claim that the constant 
value c = E[X] is E[X|G]. Indeed, any constant function is measurable 
with respect to any σ-field So (a) holds. For (b), we have E[X1{Ω}] = 
E[X] = c and E[c1{Ω}] = E[c] = c; and E[X1{Ø}] = 0 and E[c1{Ø}] = 
0. 

•	 As the other extreme, suppose G = F . Then we claim that X = E[X|G]. 
The condition (b) trivially holds. The condition (a) also holds because of 
the equality between two σ-fields. 

•	 Let us go back to our example of conditional expectation with respect to 
an event A ⊂ Ω. Consider the associated σ-fields G = {Ø, A, Ac , Ω}
(we established in the first lecture that this is indeed a σ-field). Consider 
a random variable Y : Ω → R defined as 

E[X1{A}]
Y (ω) = E[X|A] =  c1P(A)

for ω ∈ A and
 

E[X1{Ac}] 
Y (ω) = E[X|Ac] =  c2P(Ac)

for ω ∈ Ac . We claim that Y = E[X|G]. First Y ∈ G. Indeed, assume 
for simplicity c1 < c2. Then {ω : Y (ω) ≤ x} = Ø when x < c1, = A 
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for c1 ≤ x < c2, = Ω when x ≥ c2. Thus Y ∈ G. Then we need to check 
equality E[X1{B}] = E[Y 1{B}] for every B = Ø, A, Ac , Ω, which is 
straightforward to do. For example say B = A. Then 

E[X1{A}] = E[X|A]P(A) = c1P(A). 

On the other hand we defined Y (ω) = c1 for all ω ∈ A. Thus 

E[Y 1{A}] = c1E[1{A}] = c1P(A). 

And the equality checks. 

•	 Suppose now G corresponds to some partition A1, . . . , Am of the sample 
space Ω. Given X ∈ F , using a similar analysis, we can check that 
Y = E[X|G] is a random variable which takes values E[X|Aj ] for all 
ω ∈ Aj , for j = 1, 2, . . . ,m. You will recognize that this is one of our 
earlier examples where we considered conditioning on a simple random 
variable Y to get E[X|Y ]. In fact this generalizes as follows: 

•	 Given two random variables X, Y : Ω → R, suppose both ∈ F . Let 
G = G(Y ) ⊂ F be the field generated by Y . We define E[X|Y ] to be 
E[X|G]. 

1.3 Proof of existence 

We now give a proof sketch of Theorem 1. 

Proof. Given two probability measures P1, P2 defined on the same (Ω, F), P2 
is defined to be absolutely continuous with respect to P1 if for every set A ∈ F , 
P1(A) = 0 implies P2(A) = 0. 

The following theorem is the main technical part for our proof. It involves 
using the familiar idea of change of measures. 

Theorem 2 (Radon-Nikodym Theorem). Suppose P2 is absolutely continuous 
with respect to P1. Then there exists a non-negative random variable Y : Ω → 
R+ such that for every A ∈ F 

P2(A) = EP1 [Y 1{A}]. 

Function Y is called Radon-Nikodym (RN) derivative and sometimes is denoted 
dP2/dP1. 
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Problem 1. Prove that Y is unique up-to measure zero. That is if Y ' is also RN 
derivative, then Y = Y ' a.s. w.r.t. P1 and hence P2. 

We now use this theorem to establish the existence of conditional expec
tations. Thus we have G ⊂ F , P is a probability measure on F and X is 
measurable with respect to F . We will only consider the case X ≥ 0 such that 
E[X] < ∞. We also assume that X is not constant, so that E[X] > 0. Consider 
a new probability measure P2 on G defined as follows: 

EP[X1{A}]
P2(A) = , A ∈ G,

EP[X] 

where we write EP in place of E to emphasize that the expectation operator is 
with respect to the original measure P. Check that this is indeed a probability 
measure on (Ω, G). Now P also induced a probability measure on (Ω, G). We 
claim that P2 is absolutely continuous with respect to P. Indeed if P(A) = 0 
then the numerator is zero. By the Radon-Nikodym Theorem then there exists 
Z which is measurable with respect to G such that for any A ∈ G 

P2(A) = EP[Z1{A}]. 

We now take Y = ZEP[X]. Then Y satisfies the condition (b) of being a 
conditional expectation, since for every set B 

EP[Y 1{B}] = EP[X]EP[Z1{B}] = EP[X1{B}]. 

The second part, corresponding to the uniqueness property is proved similarly 
to the uniqueness of the RN derivative (Problem 1). 

2 Properties 

Here are some additional properties of conditional expectations. 

Linearity. E[aX + Y |G] = aE[X|G] + E[Y |G]. 

Monotonicity. If X1 ≤ X2 a.s, then E[X1|G] ≤ E[X2|G]. Proof idea is similar 
to the one you need to use for Problem 1. 

Independence. 

Problem 2. Suppose X is independent from G. Namely, for every measurable 
A ⊂ R, B ∈ G P({X ∈ A} ∩ B) = P(X ∈ A)P(B). Prove that E[X|G] = 
E[X]. 
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Conditional Jensen’s inequality. Let φ be a convex function and E[|X|], E[|φ(X)|] < 
∞. Then φ(E[X|G]) ≤ E[φ(X)|G]. 

Proof. We use the following representation of a convex function, which we do 
not prove (see Durrett [1]). Let 

A = {(a, b) ∈ Q : ax + b ≤ φ(x), ∀ x}. 

Then φ(x) = sup{ax + b : (a, b) ∈ A}. 
Now we prove the Jensen’s inequality. For any pair of rationals a, b ∈ 

Q satisfying the bound above, we have, by monotonicity that E[φ(X)|G] ≥ 
aE[X|G] + b, a.s., implying E[φ(X)|G] ≥ sup{aE[X|G] + b : (a, b) ∈ A} = 
φ(E[X|G]) a.s. 

Tower property. Suppose G1 ⊂ G2 ⊂ F . Then E[E[X|G1]|G2] = E[X|G1] and 
E[E[X|G2]|G1] = E[X|G1]. That is the smaller field wins. 

Proof. By definition E[X|G1] is G1 measurable. Therefore it is G2 measurable. 
Then the first equality follows from the fact E[X|G] = X , when X ∈ G, which 
we established earlier. Now fix any A ∈ G1. Denote E[X|G1] by Y1 and E[X|G2] 
by Y2. Then Y1 ∈ G1, Y2 ∈ G2. Then 

E[Y11{A}] = E[X1{A}], 

simply by the definition of Y1 = E[X|G1]. On the other hand, we also have 
A ∈ G2. Therefore 

E[X1{A}] = E[Y21{A}]. 

Combining the two equalities we see that E[Y21{A}] = E[Y11{A}] for every 
A ∈ G1. Therefore, E[Y2|G1] = Y1, which is the desired result. 

An important special case is when G1 is a trivial σ-field {Ø, Ω}. We obtain 
that for every field G 

E[E[X|G]] = E[X]. 
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3 Filtration and martingales
 

3.1 Definition 

A family of σ-fields {Ft} is defined to be a filtration if Ft1 ⊂ Ft2 whenever 
t1 ≤ t2. We will consider only two cases when t ∈ Z+ or t ∈ R+. A stochastic 
process {Xt} is said to be adapted to filtration {Ft} if Xt ∈ Ft for every t. 

Definition 2. A stochastic process {Xt} adapted to a filtration {Ft} is defined 
to be a martingale if 

1.	 E[|Xt|] < ∞ for all t. 

2. E[Xt|Fs] = Xs, for all s < t. 

When equality is substituted with ≤, the process is called supermartingale. 
When it is substituted with ≥, the process is called submartingale. 

Suppose we have a stochastic process {Xt} adapted to filtration {Ft} and 
'suppose for some s < s < t we have E[Xt|Fs] = Xs and E[Xs|Fs/ ] = Xs/ . 

Then using Tower property of conditional expectations 

E[Xt|Fs/ ] = E[E[Xt|Fs]|Fs/ ] = E[Xs|Fs/ ] = Xs/ . 

This means that when the stochastic process {Xn} is discrete time it suffices to 
check E[Xn+1|Fn] = Xn for all n in order to make sure that it is a martingale. 

3.2 Simple examples 

1.	 Random walk. Let Xn, n = 1, . . . be an i.i.d. sequence with mean µ 
and variance σ2 < ∞. Let Fn be the Borel σ-algebra on Rn . Theni 
Sn − µn = Xk − µn is a martingale. Indeed Sn is adapted to 0≤k≤n 
Fn, and 

E[Sn+1 − (n + 1)µ|Fn] = E[Xn+1 − µ + Sn − nµ|Fn] 
= E[Xn+1 − µ|Fn] + E[Sn − nµ|Fn] 
a 
= E[Xn+1 − µ] + Sn − nµ 
= Sn − nµ. 

Here in (a) we used the fact that Xn+1 is independent from Fn and Sn ∈ 
Fn. 

2.	 Random walk squared. Under the same setting, suppose in addition 
µ = 0. Then S2 − nσ2 is a martingale. The proof of this fact is very n 
similar. 
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4 Additional reading materials 

• Durrett [1] Section 4.1, 4.2. 
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