6.265-15.070 Advanced Stochastic Processes Take home final exam.

Date distributed: December 15
Date due: December 18
100 points total

Problem 1 ($\mathbf{1 5}$ points) Suppose X_{i} is an i.i.d. zero mean sequence of random variables with a finite everywhere moment generating function $M(\theta)=\mathbb{E}\left[\exp \left(\theta X_{1}\right)\right]$. Argue the existence and express the following large deviations limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(\sum_{1 \leq i \neq j \leq n} X_{i} X_{j}>n^{2} z\right)
$$

in terms of $M(\theta)$ and z.
Problem 2 (15 points) Establish the following identity directly from the definition of the Ito integral:

$$
\int_{0}^{t} s d B_{s}=t B_{t}-\int_{0}^{t} B_{s} d s
$$

Hint: Think about the integral $\int_{0}^{t} B_{s} d s$ as a limit of the sums $\sum_{i} B_{t_{i+1}}\left(t_{i+1}-t_{i}\right)$.
Problem 3 (15 points) Given a stochastic process X_{t}, the so-called Stratonovich integral $\int_{0}^{t} X_{s} \circ d B_{s}$ of X_{t} with respect to a Brownian motion B_{t} is defined as an \mathbb{L}_{2} limit of

$$
\lim _{n} \sum_{0 \leq i \leq n-1} X_{t_{i}^{*}}\left(B_{t_{i+1}}-B_{t_{i}}\right),
$$

over sequence of partitions $\Pi_{n}=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=t\right\}$, with resolution $\Delta\left(\Pi_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, when such a limit exists. Here $t_{i}^{*}=\frac{t_{i}+t_{i+1}}{2}$. Compute the Stratonovich integral $\int_{0}^{t} B_{s} \circ d B_{s}$ and compare it with the Ito integral $\int_{0}^{t} B_{s} d B_{s}$

Problem 4 (10 points) Given a sequence of real values $x_{n} \in \mathbb{R}, n \geq 1$, consider the associated sequence of δ probability measures $\mathbb{P}_{n}=\delta_{x_{n}}$. Show that \mathbb{P}_{n} is tight if and only if the set $x_{n}, n \geq 1$ is bounded. Show that if $\mathbb{P}_{n}=\delta_{x_{n}}$ converges weakly to some measure \mathbb{P}, then there exists a limit $\lim _{n} x_{n}=x$ and furthermore $\mathbb{P}=\delta_{x}$.

Problem 5 ($\mathbf{1 5}$ points) Recall from the probability theory that a sequence of random variables $X_{n}: \Omega \rightarrow \mathbb{R}$ is said to converge to X in distribution if $F_{X_{n}}(x) \rightarrow F_{X}(x)$ for every point x, such that F is continuous at x. Here F_{n} and F denote the cumulative distribution functions of X_{n} and X respectively.
(a) Each random variables $Z: \Omega \rightarrow \mathbb{R}$ induces a probability measure \mathbb{P}_{Z} on \mathbb{R} equipped with the Borel σ-field defined by $\mathbb{P}_{Z}(B)=\mathbb{P}(Z \in B)$. Thus from X_{n} and X we obtain sequences of probability measures \mathbb{P}_{n} and \mathbb{P} on \mathbb{R}. Show that \mathbb{P}_{n} converges weakly to $\mathbb{P}\left(\mathbb{P}_{n} \Rightarrow \mathbb{P}\right)$ if and only if X_{n} converges to X in distribution. Namely, the two notions of convergence are identical for random variables.
Hint: for one direction you might find it useful to use Skorohod Representation Theorem (which you would need to find/recall on your own) and the relationship between the almost sure convergence and convergence in distribution.
(b) Suppose X_{n} is sequence of random variables which converges in distribution to X, all defined on the same probability space Ω. Suppose the sequence of random variables Y_{n} on Ω converges to zero in distribution. Establish that $X_{n}+Y_{n}$ converges weakly to X.

Problem 6 ($\mathbf{1 5}$ points) Exercise 1 from Lecture 21. (Refer to the lecture note for the statement of the problem).

Problem 7 ($\mathbf{1 5}$ points) Suppose $X_{n}, n \geq 1$ is an i.i.d. sequence with a zero mean and variance σ^{2}. Suppose $\theta>0$ is a fixed constant. Compute the following triple-limit

$$
\lim _{z \rightarrow \infty} z^{-1} \lim _{t \rightarrow \infty} \lim _{n \rightarrow \infty} \log \mathbb{P}\left(\max _{1 \leq k \leq n t}\left(\frac{1 \leq i \leq k}{} X_{i}-\theta \frac{k}{n}\right) \geq z\right) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

