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15.072 Queues: Theory and Application 

HW 5 Solutions 

May 12, 2006 

Problem 1. Consider a Markov process with a countable state space i = 1, 2, . . . , n, . . . . Given 
the transition rates qij of the process derive the expected time 1/µi that the system stays in state 
i and the probability pij that the next state visited after state i is state j. 

Conversely, suppose you are given µi, pij . Obtain the values of the rates qij . 

Solution: 
We have, 

qij =	 lim 
P(X(t + h) = j|X(t) = i)


h 0 h
→

= pij lim 
P(1 transition|X(t) = i) P(X(t + h) = j,> 1 transitions in (t, t + h]|X(t) = i)

+ lim 
h 0 h h 0	 h→

= pij µi 
→

∴ qij = µi pij 

j j 

⇒ µi = qij


j


pij = �	
qij


j qij


Note, by definition qii = 0 ⇒ pii = 0. Conversely, given pij , µi, qij = pij µi, qii = 0. Note that this 
formulae work even when pii = 0. �

Problem 2. Exercise 5.3 from Chapter 5. 

Solution: 

(a) To show that S1 and S2 for tandem queues are independent we first need to understand and

show the following fact about M/M/1 queues ­ if a customer enters the system at t1 and

exits the system at time t2, then the system time t2 − t1 of that customer is independent of
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the departure process from the system upto time t2. To see this consider the time reversed 
system which will also be an M/M/1 queue by reversibility. The departure process upto time 
t2 of the original queue corresponds to the arrival process for the reversed queue after time 
(­)t2. The system time of the customer of interest in the reversed queue is actually the same 
as that in the original queue. It is easy to see that (in the reversed M/M/1 queue), system 
time of a customer is independent of the arrivals that happen after its time of arrival (­)t2 as 
the service discipline is FCFS. But this means that for the original system, the system time 
is independent of the departure process upto the time of exit from the system. 

Now for the 2­tandem queueing system of the question, the departure process from the 1st 

queue is actually the same as the arrival process for the 2nd queue. Thus S1 is independent 
of the arrival process to the 2nd queue upto its point of arrival to the 2nd queue. Since the 
queue length that a customer sees upon arrival will be a function of the arrival process upto 
its own arrival, we conclude that S1 is independent of L+

2 
−, which is the no. that a customer 

sees in Station 2 upon its arrival at Station 2. Hence S1 must be independent of S2. (In fact 
S1 and W2 will also be independent.) 

(b) Let us denote by L−−, L−−, the no. that an arriving customer sees in stations 1 and 2 1 2 
respectively, upon its arrival to the tandem system. Let L+

2 
− be the no. that customer sees 

in station 2 just after completing service in station 1. Note that the event W1 = 0 ≡ L−− = 0 1 
and W2 = 0 ≡ L+

2 
− = 0. Thus 

P (W2 = 0) = P L+
2 
− = 0 

= 1 − ρ2 

P (W2 = 0|W1 = 0) = P L+
2 
− = 0|L−− = 0 1 � � � � �∞

= P L+
2 
− = 0|L−− = k, L−− = 0 P L−− = k L−− = 0 2 1 2 | 1 

k=0 
∞

= P (k customers finished service at Station 2 in S1) P L−− = k2 
k=0 
∞ � �k µ2 = (1 − ρ2) ρk 

µ1 + µ2
2 

k=0 

1 − ρ2 = ρ2µ21 − µ1+µ2 

λ 
= 

ρ2µ1 
. . . (ρ2 = )1 − 

µ1 + µ2 − λ µ2 

> 1 − ρ2 . . . (µ2 > λ) (1) 

Thus P (W2 = 0) =� P (W1 = 0) in general. And hence W1 and W2 cannot be independent. 
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(c) Let us find P L+
2 
− = n|L−− = 0 . The case n = 0 was solved in 2. So let us assume n > 0.1 

� � � � � � �∞

P L+
2 
− = n|L−− = 0 = P L+

2 
− = n|L−− = k, L−− = 0 P L−− = k L−− = 0 1 2 1 2 | 1 

k=0 
∞

= P ( exactly k − n customers finished service at Station 2 in S1) P L−− = k2 
k=n 
∞ � �� µ2 

n−k µ1 = (1 − ρ2) ρk 

µ1 + µ2 µ1 + µ2
2 

k=n 
∞ �� ρ2µ2 

�k µ1 n= 
µ1 + µ2 

(1 − ρ2) ρ2 µ1 + µ2
k=0 

µ1 (1 − ρ2) n= ρ2
µ1 + µ2 − λ


∴ E[e−sW2 |W1 = 0] = E[e−sW2 L−− = 0] 1|
∞

= E[e−sW2 |L+
2 
− = n, L−− = 0]P L+

2 
− = n L−− = 0 1 | 1 

n=0 
∞

= E[e−sW2 |L+
2 
− = n]P L+

2 
− = n L−− = 0 1|

n=0 

ρ2µ1 = 1 − 
µ1 + µ2 − λ 

ρ2µ1 = 1 − 
µ1 + µ2 − λ 

ρ2µ1 = 1 − 
µ1 + µ2 − λ 

∞ � 
µ2+ 

µ2 + s 
n=1 

+ 
µ1 (1 − ρ2) 
µ1 + µ2 − λ 

ρ2µ1+ 
µ1 + µ2 − λ 

n µ1 (1 − ρ2) nρ2 µ1 + µ2 − λ 

λ 
µ2 + s− λ 

µ2 − λ 
µ2 − λ + s 

∴ P (W2 > x) = 
ρ2µ1 

e−(µ2−λ)x 

µ1 + µ2 − λ 

Problem 3. Exercise 5.5 from Chapter 5. 

Solution: 

(a) The system can be modeled as the Closed Single Class Queueing Network with N customers 
and 3 stations as shown in Figure 1 below 
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Figure 1: Closed Single Class Queueing Network for the Computer System 

(b) Let us find the pseudo­arrival rates at each station. We have 

=v2 v1 

v3 = (1 − p) v2 

v1 + v2 + v3 = 1 
1 ⇒ v1 = v2 

v3 

= 

= 

3 − p 
1 − p 
3 − p 
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Then, 

gi (n) = 

⇒ g1 (n1) = 

g2 (n2) = 

g3 (n3) = 

Let G 
� � 

nvi 

Πn
i=1µi 

1 1 
(3 − p)n n1!µ11 

1 1 
(3 − p)n2 µ2 

n2 

n31 − p 

n1 

1 
3 − p 2n3−1µn3 

− 1[n3 = 0] 

= n1,n2,n3:n1+n2 +n3=N g1 (n1) g2 (n2) g3 (n3). Then 

P (L1 = n1) = 
g1 (n1) 

G 

� 
N�−n1

g2 (n2) g3 (N − n1 − n2) 

� 

P (L2 = n2) = 

n2=0 

g2 (n2) 
G 

� 
N�−n2

g3 (n3) g1 (N − n2 − n3) 

� 

P (L3 = n3) = 

n3=0 

g3 (n3) 
G 

� 
N�−n3

g1 (n1) g2 (N − n3 − n1) 

� 

n1=0 

(c) Using the distributions derived above, one can find the expected station occupancy E[L1], E[L2], E[L3]. 

Also let GN −1 = =N −1 g1 (n1) g2 (n2) g3 (n3). Then using Little’s law n1,n2,n3:n1+n2+n3

E[L2]E[S2] = 
λ2 

E[L2]G 
= 

v2GN −1 

(3 − p) E[L2]G 
= 

GN −1 

similarly, E[S3] = 
(3 − p) E[L3]G 
(1 − p) GN −1 
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Then expected total time to completion for a job ­ T is given by


E[T ] = 

= 

= 

E[S2] + (1 − p) E[S3] 
(3 − p) E[L2]G 

GN −1 
+ (1 − p) 

(3 − p) E[L2]G 
(1 − p) GN −1 

(3 − p) 
(E[L2] + E[L3]) G 

GN −1 

= 

= 

(3 − p) (N − E[L1]) 
G 

GN −1 

N − E[L1] 
λ1 

The above expression has a simple interpretation. It is simply Little’s Law applied to the 
composite system made up of stations 2 and 3 (i.e., the CPU and the Memory Unit). 

Problem 4. Exercise 5.7 from Chapter 5. 

Solution: 

Figure 2: Problem 4 Open Single Class Network 
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(a) 

λ2 = (1 − p) λ1 + q2λ2 

λ1 = α + pλ1 + q1λ2 

1 − q2
λ1 =	 α⇒	

(1 − q1 − q2) (1 − p) 
1 

λ2 = α
1 − q1 − q2 

An equilibrium distribution will exist if the system is stable. This requires µ1 > λ1 and 
1−q2 1µ2 > λ2 i.e., µ > max 1, 1−p α.1−q1 −q2 

(b) We know, as Open SQNets are product form 

PX1 = x1, X2 = x2 = P (X1 = x1) P (X2 = x2) 
x2= (1 − ρ1) ρx1 (1 − ρ2) ρ1� �� � 2 

λ2 λ1 
x2x1 λ2λ1 = 1 − 

µ 
1 − 

µ µx1+x2 

(c) Let T denote the total time that an exogenous customer spends in the system. Applying 
Little’s law to the composite system, then 

E[T ] = 
E[L = L1 + L2] = 

E[L1] + E[L2] 
α α 

λ1 λ2 = + 
α(µ− λ1) α(µ− λ2) 

1(d) Let I denote the length of an idle period and B that of a busy period. Then E[I] = .α 

E[I]
P (system empty) = 

E[I] + E[B] 
1

∴ E[B] = E[I] 
P (X1 = 0, X2 = 0) 

− 1 ⎛	 ⎞ 
1 1 

= ⎝�	 �� � − 1⎠ 
α λ1 λ21 − µ 1 − µ 

(e) No, the total net flow in the first station is not a Poisson process in general. This is because 
the arrival process and departure process from an M/M/1 queue are not independent and 
their sum is in general not a Poisson process. For example when we have q1 = q2 = 0 and 
p > 0, the arrivals at station 1 will be the sum of two non­independent arrival processes which 
is not a Poisson process. 
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