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Feb 23, 2006 

Problem 1 (a) Exercise 1.3 Compare an M/M/1 system with arrival rate λ/2 and service rate 
µ, with an M/M/2 system with arrival rate λ and two servers each having rate µ in terms of 
the expected number of customers in each system. 
Solution: 
We assume that λ < 2µ, so that both systems are stable. For the M/M/1 system, we have 
ρ = λ 

2µ 

ρ
E[La] = 

1 − ρ 
λ 

= 
2µ − λ 

λFor the M/M/2 system, we have ρb = 2µ = ρ. 

E [Lb] = 
ρb 2 · 2! · (1 + 2ρb) · (1 − ρb)

2 + 22ρ2 
b (2 + 1 − 2ρb) 

1 − ρb (1 − ρb) (1 + 2ρb) · 2! + 22ρ2 � � b 

= E [La] 
4 (1 + 2ρ) 1 − 2ρ + ρ2 + 4ρ2 (3 − 2ρ) 

2 (1 − ρ) (1 + 2ρ) + 4ρ2 

Thus, 
E [Lb] =

4 2 
= 

E [La] 2 + 2ρ 1 + ρ

Thus,

E [Lb]
lim = 2 

ρ 0 E [La]→

E [Lb]lim = 1 
ρ 1 E [La]→

We note that the M/M/2 system is worse than M/M/1 in terms of the expected number 
in the system for all ρ. This is to be expected as the transition rate of M/M/2 from state 
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k = 1 to k = 0 is slower than that of the M/M/1 system, while all other transition rates are 
identical. Thus, the steady state probability for the states k = 1 and k = 0 is less for the 
M/M/2 system leading it to spend more time on an average in the high customers in the 
system states leading to a higher on an average queue length. When the traffic intensity is 
very low (i.e., ρ close to 0), the queues seldom see more than one customer in the system, 
and so only one of the two servers in the M/M/2 will be utilized. This is in effect halves its 
effective ρ thus making its average queue length twice as big that of the M/M/1 system. On 
the other extreme, when ρ is close to 1, the states k = 0 and k = 1 have low steady state 
probabilities and the systems have an almost identical performance. 

(b)	 Exercise 1.4 In a semiconductor factory a machine inspects finished products. These arrive 
in the machine according to a Poisson process of rate λ and are processed for a time interval 
which is exponentially distributed with rate µ. With probability p the parts pass the test 
and are ready to be used, while with probability 1 − p they do not pass inspection and are 
returned to the inspection machine to be tested again. 

(1) What is the ergodicity condition? 

(2) Find the expected number of parts in the machine. 

Solution: 
Let Si be The test process which is independent of the service process represents a probabilistic 
splitting of the service process with success rate p. We know that the probabilistic splitting 
results in an (independent) memoryless (Poisson) process with rate pµ. Since the devices 
that fail the test stay in the queue and their contingent service distribution is the same, the 
given system (processing and testing together) effectively has an exponential service rate pµ. 
(Note that in this problem, we interpret service time distribution as the distribution of time 
until a product leaves the system, when the system is not empty. This is the same as the 
rate of transition from a state k + 1 to k ∀k ≥ 0; but not quite the same as the service time 
distribution of a ‘tagged’ product.) Thus the system is like an M/M/1 queue with effective 

λtraffic intensity ρe = pµ . 

(1) The ergodicity condition, or the condition for existence of a steady state distribution is 
ρe = λ < 1 i.e, λ < pµ. pµ


ρe λ
(2)	 E[L] = 1−ρe 
= pµ−λ . 

(c)	 Exercise 1.5 The interdeparture time is the time between successive departures from a 
queueing system. Consider an M/M/1 queue with arrival rate λ and service rate µ. 

(1) Derive the probability distribution of the interdeparture time from an M/M/1 queue in 
steadystate. 

(2) Prove that the departure process from an M/M/1 system is Poisson with rate λ. 
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Solution: 

(1) Let Tj be the state of the system just after a departure in the steady state. We first find 
the distribution of Tj . Let Tj

− denote the state of the system just before the departure. 
Let Dj denote the event of a departure in an interval of length Δt in the steady state. 
Using Baye’s rule, 

P(Tj = k|Dj ) = P(Tj
− = k + 1|Dj ) 

P(Tj
− = k + 1, Dj ) 

∞ P(Tj
− = i, Dj )i=0 

ρk+1(1 − ρ)µΔt 
∞ ρi(1 − ρ)µΔti=1 

= ρk (1 − ρ) 

Thus the state of the system just after a departure has the same distribution as the 
steady state of time average distribution (c.f. PASTA property). Now let X, Y denote 
independent exponential random variables with rates λ and µ respectively. Let Zj denote 
the jth interdeparture time. Then 

sZj sZj sZjE e = E e Tj−1 = 0 P (Tj−1 = 0) + E e Tj−1 ≥ 1 P (Tj−1 ≥ 1) 
s(X+Y ) sY= E e (1 − ρ) + E e ρ 

λ λµ µ λ 
= 1 − 

µ (λ − s) (µ − s)
+ 

µ − s µ 
λ 

= 
λ − s 

Thus Zj is exponentially distributed with rate λ. 

(2) In the previous part we showed that the interdeparture times are exponentially distrib
uted with rate λ. To show that the departure process is Poisson with rate λ, we need to 
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show that Zj s are independent. For this we first show that Zj and Tj are independent. 

f (Tj = i, Zj = z) 
l=∞

= f (Tj = i, Zj = z Tj−1 = l) f (Tj−1 = l)|
l=0


= f (Tj = i, Zj = z Tj−1 = 0) f (Tj−1 = 0)
|
i+1

+ f (Tj = i Zj = z, Tj−1 = l) f (Tj = i Zj = z) f (Tj−1 = l)|	 |
l=1 

z � (λz)i+1−l 

= (1 − ρ) 
� 

λe−λ(z−x)µe−µxe−λx (λx)i 

dx + 
i+1

µe−µz e−λz 

(i + 1 − l)! 
(1 − ρ) ρl 

i!0 l=1 � (λz)l 

ρ−l= (1 − ρ) λe−λz 
� µz 

e−x (ρx)i 

dx + µ (1 − ρ) ρi+1 e−(µ+λ)z
i

i!	 l!0 l=0�� µz i i


= (1 − ρ) ρiλe−λz e−x x dx + e−µz 
� (µz)l


i!	 l!0 l=0 

=	 (1 − ρ) ρiλe−λz 

Thus Tj and Zj are independent. Now 

fZ1Z2...Zk (z1, z2, . . . , zk) = fZ2,...,Zk Z1,T1 (z2, . . . , zk |z1, t1)fZ1,T1 (z1, t1)|
t1 

= fZ2,...,Zk Z1,T1 (z2, . . . , zk |z1, t1)fZ1 (z1)fT1 (t1)|
t1 

=	 fZ1 (z1) fZ2 ,...,Zk T1 (z2, . . . , zk |t1)fT1 (t1)|
t1 

=	 fZ1 (z1) · fZ2 ,...,Zk (z2, . . . , zk ) 
=	 fZ1 (z1) · fZ2 (z2) · . . . · fZK (zk ) 

Thus, Zis are i.i.d. exponential distributed with rate λ and hence the departure process 
is Poisson. 
NOTE: M/M/1 queues satisfy the property of ‘time reversibility’, a thing to be covered 
later. This leads quite naturally to the conclusion that the output process of an M/M/1 
queue must be Poisson with rate λ. 

(d)	 Exercise 1.9 Morning joggers enter a circular ring according to a Poisson process of rate λk = 
λ/(k + 1), k ≥ 0, which qualitatively captures the phenomenon that a jogger is discouraged 
to join the ring if there are many people using it. If they enter, they stay in the ring for an 
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exponentially distributed time interval with mean 1/µ. Find the distribution of the number 
of joggers in steadystate. 
Solution: 
Let pi be the steady state probability of the ring having i joggers. Then the probability 
flowbalance equantions require 

pi−1λi−1 = piµi 

λHere λi = i+1 and µi = iµ. 

λ
∴ pi = 

i2µ
pi−1 �	 �i1 λ 

= 
(i!)2 µ

p0 

Normalizing, � � 1 
� �i 

�−1∞
λ 

p0 = 1 + 
(i!)2 µ

i=1 � �i1 λ
∴ pi = p0 (i!)2 µ 

(e)	 Exercise 1.12 Find the transient distribution of the number of customers in an M/M/∞ 
queue. 
Solution: 
The ChapmanKolmogorov equations for the system are 

dPk (t) = − (λk + µk ) Pk (t) + λk−1Pk−1 (t) + µk+1Pk+1 (t)
dt 

= − (λ + kµ) Pk (t) + λPk−1 (t) + (k + 1) µPk+1 (t) . . . (k ≥ 1) 
dP0 (t) =	 −λP0 (t) + µP1 (t) (1)

dt 

Now let us define Pi = 0 ∀i < 0. 
∞

P (t, z) = z k Pk (t) 
k=0 

∂P � 
∴ = 

∞

z k dPk 

∂t dt 
k=0 
∞ �∂P � ∞

and = kz k−1Pk = (k + 1) z k Pk
∂z 

k=0 k=0 
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Multiplying the kth equation in (1) with zk and adding them we get 

∞� 
z k dPk 

dt 
= −λ 

∞� 
z kPk − µ 

∞� 
kz k Pk + λ 

∞� 
z k Pk−1 + µ 

∞� 
k + 1z k Pk+1 

k=0 k=0 k=0 k=0 k=0 

∂P ∂P ∂P ⇒ 
∂t 

= −λP − µz 
∂z 

+ λzP + µ 
∂z � � 

= µ 
∂P 
∂z 

− λP (1 − z) 

If we make the substitution P = exp(f(t, z)) then the above equation reduces to the following 
PDE 

∂f ∂f 
+ (µz − µ) = λ (z − 1) (2)

∂t ∂z 

This is in fact a standard(!) PDE and its generic solution is of the form 

λ � � 
f (t, z) = (z − 1) + φ e−µt (z − 1) 

µ 

⇒ ρ(z−1)Φ e−µt (z − 1)P (t, z) = e (3) 

The function Φ in (3) is arbitrary and is obtained by enforcing the boundary conditions. If 
we assume that at t = 0, there were no customers in the system. Then we get P (0, z) = 1 
∀z. This requires 

e−ρ(z−1)Φ (z − 1) =


e−ρu
⇒ Φ (u) = 

P (z, t) = e ρ(z−1)e−ρ(e−µt(z−1)) 

= e−ρ(1−e−µt)e ρ(1−e−µt)z � ρk � 
e−ρ(1−e−µt) 

∞

1 − e−µt �k k= z 
k! 

k=0 � � ��k1 − e−µt 

Pk (t) = e−ρ(1−e−µt) ρ 
(4)⇒ 

k! 

As a quick check, we verify that limt→∞ Pk = e−ρ ρ
k

k 

! , which is the Poisson distribution, the 
same as the steady state distribution for M/M/∞ queue. 

The expression in (4) has an interesting interpretation. We note that in fact the transient 
distribution is Poisson, with a time modulated intensity = ρ(1−e−µt). The following alternate 
method of deriving the transient distribution is much more revealing about this. 
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Note that a customer in an M/M/∞ queue gets serviced immediately and hence its system 
time is the same as its service time which is exponentially distributed. Now fix a time t. 
Consider some s ≤ t and a small interval [s, s + ds). The no. of arrivals in this interval is 
Poisson with intensity λds. Also, an arrival in this interval will not be serviced by time t 
and hence will be still in the system with a probability e−µ(t−s). Since these two events are 
independent, we have in fact a probabilistic splitting of the Poisson arrivals in the interval 
[s, s + ds) and the effective feed to the no. of customers in the system at t is Poisson with 
intensity λe−µ(t−s)ds. If we consider all such disjoint intervals in [0, t], we note that the 
corresponding Poisson random variables are independent with intensities λe−µ(t−s)ds. The 
sum of these independent Poisson variables is the no. of customers in the system at time t, 
and hence the latter must also be Poisson with its intensity ¯ λ(t) given by the sumintegral 

t 
¯ λ (t) = λe−µ(t−s) 

0 

1 − e−µt= ρ 

Hence, the distribution of the no. in the system at time t is given by (4). 

Problem 2 Show that Coxian distribution with m stages has coefficient of variation at least 1/m. 
Find a distribution for which the CV becomes 1/m. 

Solution: 
Note that for this problem CV = E2[X ] 

� Var(X) . An mstage Coxian Variable may be expressed as 
X = I1Y1 + I2Y2 + I2I3Y3 + . . . + I2I3 · · · ImYm, where I1, I2, . . . , Im are independent Bernoulli 
random variables with probability of success pm and Y1, Y2, . . . , Ym are exponential variables with 
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rate λi and these variables are independent, and p1 = 1. Thus, 

m

E [X] = E YiΠi
j=1Ij 

i=1 
m

= E [Yi] Πj
i 
=1E [Ij ] 

i=1 
m� 1 

= qi 
λii=1 

where, q1 = 1 and qi = qi−1pi, i ≥ 2. 

E 
� 
X2
� 

= E 

⎡ ⎣ 

� 
m� 

YiΠi 
j=1Ij 

�2 
⎤ ⎦ 

i=1 

= 
m� 

E 
�� 

YiΠi 
j=1Ij 

�2 
� 

+ 2 
m� k−1� 

E 
� 
YkYlΠk 

j=1Ij Πl 
j=1Ij 

� 
i=1 k=1 l=1 

= 
m� 

E 
� 
Y 2 

i 

� 
Πi 

j=1E [Ij ] + 2 
m� k−1� 

E [Yk ] E [Yl] Πk 
j=1E [Ij ] 

i=1 k=1 l=1 

= 
m� 

i=1 

qi 
2 
λ2 

i 
+ 2 

m� 

k=1 

k−1� 

l=1 

qk 
1 
λk 

1 
λl 

∴ E 
� 
X2
� 

≥ 
m� 

q 2 
i λ2 

2 
+ 2 

m� k−1� 
qk ql 

λk 

1 1 
λl 

(5) 
ii=1 k=1 l=1 

m� � � 12= E X2 + qi λ2 
i=1 i 

m� � � 12∴ Var X2 qi λ2≥ 
i=1 i � �2� 11 

m

qi≥ 
m λii=1 

1 
= (E [X])2 

m 
1 

CV ⇒ ≥ 
m 

If we have an Erlangm variable (which can be also viewed as an mstage Coxian variable), then 
we note that qi = 1 and λi = λ∀i and equality holds in all steps from (5). Thus the bound becomes 
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tight for an Erlang distribution. It is easy to see that this is also a necessary condition. 

Problem 3 PalmKhintchine Theorem. Special case Consider a sequence of n independent 
renewal processes observed at infinity. Aj = {τ1 

j , τ j + τ2 
j , . . . , τ j

m, . . .}. All of them have 1 1 + · · ·+ τ j 

interrenewal times τ j 
m which are i.i.d. with distribution F . We rescale all of the renewal times by a 

factor n (that is Aj becomes {nτ1 
j , n(τ j +τ2 

j ), . . . , n(τ j
m, . . .)}) and consider a superposition 1 1 +· · ·+τ j 

¯	 ¯ An = ∪1≤j≤nAj .	 Establish that An has in the limit a Poisson distribution: 

lim P( ¯ An(0, t) = k) = 
(λt)k 

exp(−λt), 
n→∞ k! 

where λ = 1/E[τ j 
m]. 

Note I. You may want to use the following fact from the renewal theory. If a renewal process 
with expected interrenewal time z̄ is observed at infinity, then the time Z till the next renewal 
(forward recurrence time) has density fZ (z) = P(τ1 ≥ z)/τ̄ = (1 − F (z))/τ̄ . 

Note II. PalmKhintchine Theorem holds under more general assumptions of superimposing 
renewal processes with different rates, provided that they ”scale” similarly. Here we simplifed 

¯the statement somewhat. Also you are not required to prove that interrenewal times of An are 
asymptotically independent, that you would need to show that the limiting process is Poisson. 

Solution: 
Lets find the complimentary distribution function for the forward recurrence time. 

∞
P(Z > z) = λ (1 − F (x))dx 

z � z 

= 1 − λ (1 − F (x))dx 
0 

= 1 − λz + zQ(z) 

F (x)dx0where, we define Q(z) = 
R z 

z , z = 0 and � Q(0) = 0. We assume that there are no bulkarrivals 
in the process Aj . Then, limt 0 F (t) = 0, Also →

F (x)dx00 ≤ limt 0 

R t 

≤ 
t
lim 

0 
F (t) = 0 →	 t →

limt 0 Q (t) = 0 ⇒ →

¯Let Xj , Z̄j denote the interarrival and rescaled forward recurrence time in the jth process. 
Then, 

P (Aj (0, t) = 0) = P 
� 
Z̄j > t = P Zj >

t 
n 

t t t 
= 1 − λ + Q	 (6) 

n n n 
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Further,


¯ � � ̄  � � ¯ �

0 P (Aj (0, t) ≥ 2) P Zj ≤ t, Xj ≤ t = P Zj ≤ t P Xj ≤ t≤ ≤ � � �� � � 

t t t t
∴ 0 P (Aj (0, t) ≥ 2) λ Q F≤ ≤ 

n 
− 

n n n 

tHence P (Aj (0, t) ≥ 2) = o2 
t ; where, o2 (·) is some function satisfying limt 0 o2 (·) = 0. 

Also, 
n n →

P (Aj (0, t) = 1) = 1 − P (Aj (0, t) = 0) − P (Aj (0, t) ≥ 2) 
t t t t t 

= λ Q o2 
n 
− 

n n 
− 

n n 

t tHence P (Aj (0, t) = 1) = n λ + o1 n ; where, o1 (·) is some function satisfying limt→0 o1 (t) = 
0. 

Now, we have 

¯ ¯P An (0, t) = k = P An (0, t) = k, max Ai (0, t) ≤ 1 + P An (0, t) = k, max Ai (0, t) > 1 
1≤i≤n 1≤i≤n 

¯∴ 0 ≤ P An (0, t) = k − P An (0, t) = k, max Ai (0, t) ≤ 1 ≤ P max Ai (0, t) > 1 (7)
1≤i≤n 1≤i≤n 

But, � � n

lim P max Ai (0, t) > 1 lim P (Ai (0, t) ≥ 2) 
n→∞ 1≤i≤n 

≤ 
n→∞ 

i=1 
n � �� t t 

= lim o2 
n nn→∞ 

i=1 

= 0 

Thus, from (7), 

¯lim P An (0, t) = k = lim P An (0, t) = k, max Ai (0, t) ≤ 1

1≤i≤n
n→∞ n→∞ � � ��n−k � � ��k t t t t t 

= lim 
n 
C

k 1 − λ
t

Q λ + o1 
n 
− 

n n n n nn→∞ � �� � � ��k(λt)k n! 
� 

t t t n−k 1 t 
= lim 

nk · (n− k)!
lim 1 − λ Q lim 1 + o1

k! n→∞ n→∞ n 
− 

n n n→∞ λ n 

(λt)k 

= 
k! 

exp (−λt) 
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¯Thus the no. of arrivals in time t, An(0, t) has a Poisson distribution. If the interarrival times 
were indpendent in this process, then it would follow that the merged process is in fact Poisson. 
Here’s a qualitative argument for why the interarrival times are aysmptotically independent. 

Suppose n is large. Let Bi denote the process formed by merging arrivals from processes n 
i, i + 1, . . . , n. W.l.o.g., assume that the 1st arrival actually occurred from process 1 after a time z. 
This arrival doesn’t have any statistical bearing on any component process except process 1. Now 
suppose the process 1 were to die after producing the arrival. Then the next arrival then must 
come from B
 2, which is merged of 1 processes produces its first −nn

arrival according to an almost exponential process and hence the residual time until it produces 
. Since n was very large, B2 

n

its first arrival doesn’t depend on z and is still exponential with the same rate. We could repeat 
this for all arrivals, i.e., kill the contributing process when it produces an arrival. The resulting 
interarrival times in the merged process, so modified will thus be independent. They will also 
almost be identically distributed because n is large. By stretching the time axis by n we achieve 
this ‘killing’ of the contributing processes; as it becomes almost impossible for a process which has 
produced an arrival just now to do so anytime in the near future. Thus, asymptotically, the merged 
process has independent, identically distributed arrivals. 

11



