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15.072 Queues: Theory and Application 

HW 2 Solutions 

Mar 10, 2006 

Problem 1 (a) Exercise 2.2 Construct a counterexample for PASTA, for a queueing system 
with a Poisson arrival process for which the lack of anticipation assumption fails to hold. 
Solution: 
There are several counterexamples possible. Here is an easy one. Consider a stable M/M/1 

queue and let L (t) denote the no. in the system at time t. Let Z (t) 
�
= L (t + Δ) for some


small, positive Δ. We note that then LAA fails to hold i.e.,


P (Z (t) = n A (u) , 0 ≤ u ≤ t, A (t + Δ) − A (t)) = P (L (t + Δ) = n A (u) , 0 ≤ u ≤ t, A (t + Δ) − A (t))| |
= P (Z (t) = n A (u) , 0 ≤ u ≤ t) 

Both the transient as well as the steady state versions of PASTA properties do not hold as

result. As


P (Z (t) = 0 A (u) , 0 ≤ u ≤ t, A (t + Δ) − A (t) = 1) | ≤ 1 − e−µΔ


∴ P (Z (t) = 0 A (u) , 0 ≤ u ≤ t, A (t + Δ) − A (t) = 1) = P (Z (t) = 0 A (u) , 0 ≤ u ≤ t)

≥ e−λΔP (L(t)) = 0 A (u) , 0 ≤ u ≤ t)|

Intuitively, the quantity of interest is the queue length in the immediate future. A random

incidence sampling would yield the observation 0 with a finite probability; however a Poisson

arrival will almost never observe such to be the case as it would almost always end up counting

itself.


If you want a ‘non­phony’ example; consider an M/M/1 queue with the modification that,

if there is just one job in service and none in the queue and if service completion happens

before next arrival then we ’hold’ the job in service till just before the next arrival. This

scheme violates LAA for Z(t) = L(t). From the perspective of an arriving customer though,

it would see a L(t) distribution exactly as an arrival to a normal M/M/1 queue. Thus

P(L−(t) = 0) = P(L−


FCFS(t) = 0). The steady state value of this is 1 − ρ. However, after the

first arrival, the system is almost never empty. Hence the time average P(L = 0) = 0.
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(b)	 Exercise 2.5 A random variable has an Erlang distribution with k phases (Ek ), if it is 
distributed as the sum of k identical exponential random variables. Compute the functions 
K(z, t) and Ko(z, t) for a renewal process, in which the interarrival distribution is E2 (Erlang 
distribution with two phases). 
Solution: 
Let us first find K0 (z, t). An Erlang­2 arrival process can be thought of as derived from a 
Poisson arrival process in which we count only even arrivals. Let NP (t) denote the underlying 
Poisson arrival Process. Then 

P (Na (t) ≥ k) = P (NP (t) ≥ 2k) 
P (Na (t) = k) = P (NP (t) = 2k) + P (NP (t) = 2k + 1) ⇒ 

∞	 ∞

∴ z k P (Na (t) = k) = z k (P (NP (t) = 2k) + P (NP (t) = 2k + 1)) 
k=0 k=0 �	 � 

e−λt (λt)2k+1∞	 ∞
k∴ K0 (z, t) = z k e−λt (λt)2k 

+ z
(2k)! (2k + 1)! 

k=0	 k=0 
√

zλt + e−
√

zλt 
√

zλt − e−
√

zλt e 
=	 e−λt e 

+
2	 2

√
z 

=	 e−λt cosh 
�√

zλt + √1 
z 

sinh 
�√

zλt 

The Erlang arrival process has memory, but the state space has size just 2. We say the system 
is in phase 0 if the process NP (t) has had an even no. of arrivals so far (i.e., the forward 
recurrence time is Erlang 2) and is in phase 1, if the process NP (t) has had an odd no. of 
arrivals so far (i.e., the forward recurrence time is exponential). Let X denote the state of 
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the system. By symmetry, P (X = 0) = P (X = 1). Then, 

P (Na 
∗ (t) = k) = P (Na (t) = k|X = 0) P (X = 0) + P (Na (t) = k X = 1) P (X = 1) |

1 
= 

2
(P (NP (t) ∈ {2k, 2k + 1}) + P (NP (t) ∈ {2k − 1, 2k})) 
∞

∴ K (z, t) = z k P (Na 
∗ (t) = k)


k=0


1 
∞

k e−λt (λt)2k 

+ e−λt (λt)2k+1 

= z
2 (2k)! (2k + 1)! 

k=0 �	 11 
∞

+ z k e−λt (λt)2k 

+ e−λt (λt)2k−1 

+ e−λt 

2 (2k)! (2k − 1)! 2 
k=1 

∞1	 � � 1 
∞ � 

k+1 (λt)2k+1 

= e−λt cosh 
�√

zλt + √1 
z 

sinh 
�√

zλt + e−λt 
� 

z k (λt)2k 

+ z
2	 2 (2k)! (2k + 1)! 

k=0 k=0 

1	 � � � � 
= e−λt cosh 

�√
zλt + √1 

z 
sinh 

�√
zλt + cosh 

�√
zλt + 

√
z sinh 

�√
zλt 

2 

1 �	 � 
=	 e−λt 2 cosh 

�√
zλt + 

1 + z 
sinh 

�√
zλt 

2	
√

z 

(c)	 Exercise 3.1 Let Λ be the number of customers served in a busy period of an M/GI/1 
queue. Compute E[zΛ]. 
Solution: 
This problem can be approached in a way similar to that of the derivation for Tacka’s results.

First note that the distribution of number of customers served during a busy period Λ,

would be independent of the service discipline so long as it is work conserving. Consider an

LCFS (with preemption) M/G/1 queue. Let C1, C2, . . . CK be the customers that pre­empted

customer C0 that launched the busy period i.e., there were K arrivals during the time period

X spanning C0’s service. Let Λi be the total no. of customers served between Ci starting


Λ �and finishing service (including Ci itself). Let E z = Φ (z). Then, as Λi s are iid given K; 
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and should have the same distribution as Λ; 

K

Λ = 1 + Λi 

i=1 

ΛiΛ i=1∴ Φ (z) = E 
� 
z = zE 

� 
z
PK 

∞
Λ= z E Πi

k 
=1zi |K = k Pr (N (X ) = k) 

k=0 
∞ �� � � ∞ 

= z Πk
i=1E z Λi Pr (N (t) = k|X = t) fX (t) dt 

0k=0 

= z 
∞

(Φ (z))k 
� ∞ 

e−λt (λt)k 

fX (t) dt 
k!0k=0 

∞∞ � 
e−λt (Φ (z) λt)k 

= z fX (t) dt 
k!0 k=0 

∞ 

= z e−λ(1−Φ(z))tfX (t) dt 
0 

∴ Φ (z) = zβ (λ (1 − Φ (z))) (1) 

ΛThe above expression gives an expression that implicitly yields Φ (z) = E z . 

Problem 2 1) Give a counterexample of the distributional law for a system that violates FIFO, 
i.e. it allows overtaking. 

2) Give a counterexample of a single server queueing system where the distributional law for a 
system that violates FIFO, i.e. it allows overtaking. 

Solution: 

(a) Consider an M/M/∞ queue. The queue­length distribution, as we saw in HW 1 (Exercise 
λ1.12) is Poisson with intensity ρ = µ . However N (S) is geometric. This is because for 

an M/M/∞ queue, the system time is same as the service time, and the no. of Poisson 
arrivals during an exponentially distributed interval will be geometric with P (N (S) = k) = 

d 
pk (1 − p), where p = λ . Thus L =� N (S). The FIFO requirment is violated and hence the λ+µ
distributional law fails to hold. 

d(b) Consider an M/M/1 queue with LCFS. Again this violates FIFO. We know LLCFS = LFCFS , 
as the state transition Markov chain for both systems is identical and the distribution is 
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geometric with parameter ρ i.e., E zL = 1−ρ . However, this is different from N (S). To see 1−ρz 
dthis note that LLCF S = Λ − 1, where Λ is the no. served during a busy period as in Exercise 

µ3.1 of this homework. For M/M/1 queue β (s) = µ+s . Substituting this in (1), we get. 

Φ (z) = z
µ 

µ + λ (1 − Φ (z)) 

L+1 1−ρSince, E z = z 1−ρz , doesn’t satisfy this equation in Φ (z), it follows that N (S) and L 
cannot have the same distribution, i.e., the distributional law fails to hold. 
To see a simpler and more intuitive example, consider a 2­class single server queue. Arrivals 
from two classes are indpedndent Poisson with rates λ1 and λ2 respectively. The service 
time for Class 1 is exponentially distributed with rate µ. That for Class 2 is 0. Also, 
Class 2 arrivals have a priority and they get served by pre­empting a class 1 customer if 
necessary. This violates the FIFO requirement for the combined system. If we consider L 
to be the total number in the system, then L should be distributed the same as that in 

λ1an M/M/1 queue with ρ = µ , since, type 2 arrivals do not spend anytime in the system. 
λ1 λ2Then P (L = 0) = 1 − µ . However, if we consider N (S), then since S = 0 w.p. λ1+λ2 

, 
P (N (S) = 0) ≥ λ2 . Take λ1 = 1, λ2 = 10, µ = 2. Clearly, the two distributions have to λ1+λ2 

be different and the distributional law will not hold. 

Problem 3 Consider a queueing system with i.i.d. interarrival times where service time of a 
customer Cn is equal to An+1 = Tn+1 − Tn ­ the interarrival time of the next customer. Assume 
there is exactly one customer at time 0 and the service time of this customer is T1. 

(a) Use Generalized Little’s Law for this system to establish the following fact from renewal 
reward theory: the forward recurrence time X∗ of a renewal process with i.i.d. interrenewal 
times Xn, n ≥ 1 has density 

P(X > t)
fX∗ (t) = .

E[X] 

This is part (b) of Exercise 3. You may assume that the probability distribution function of 
Xn has density. 

(b) Prove that

λE[X2]


E[X∗] = 
2 

. 

(c) Prove that the Laplace tranform of X∗ satisfies 

1 − α(s)
E e−sX∗ 

= λ . 
s 
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Solution: 

(a) This result can also be derived using renewal theory.	 An application of Generalized Little’s 
Law will in fact follow a similar line. Take tn (ω) to be the (n − 1)th arrival epoch and 
τn (ω) = Tn − Tn−1, i.e., the inter­arrival time for the nth arrival. Let X ∗ (t, ω) denote the 
forward recurrence time at time t. Fix some y ≥ 0. If we define fn (t, ω) = 1{X∗ (t, ω) ≤ y}
when t ∈ [Tn−1, Tn) and 0 elsewhere. Then 

∞ 

gn (ω) = fn (t, ω) 
0� Tn 

= 1{X∗ (t, ω) ≤ y}dt 
Tn−1 

= min (Xn (ω) , y)	 (2) 

Now, note that Tn are the renewal epochs for this process and gn are just rewards collected 
in between these epochs. Thus gns are i.i.d.. Then, if we apply the law of Large Numbers, 

1 
n

ḡ (ω) = lim gi (ω) 
nn→∞ 

i=1 

= E [gn (ω)] = E [min (Xn, y)] 
y 

= xf (x) dx + y (1 − F (y))	 (3) 
0 

Now, consider 

∞

h (t, ω) = fn (t, ω) 
n=1 
∞

= 1{X∗ (t, ω) ≤ y} · 1{Tn−1 ≤ t < Tn}
n=1 

= 1{X ∗ (t, ω) ≤ y}
t 

∴ ¯
1 

h (u, ω) duh (ω) = lim 
t→∞ t �0 

1 ∞ 

= lim 1{X ∗ (u, ω) ≤ y}du 
t 0t→∞ 

= P (X∗ ≤ y) (4) 

where in (4), we used the ergodicity property of the process. Then applying Generalized 
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Little’s Law, we get 

¯ h (ω) = λḡ (ω) 
t 

⇒ P (X∗ ≤ t) = 
xf (x) dx + t (1 − F (t))0 

E [X] 
P (X > t)

fX∗ (t) = 
1 − F (t)

= ⇒ 
E [X] E [X ] 

(b) Thus, 

E [X∗] = 
∞ 1 − F (t) 

tdt 
E [X ]0 

t2 ∞ � ∞ t2 

= λ (1 − F (t)) + f (t) dt 
2 0 20 

λE X 2 

= 
2 

Note that, limt→∞ (1 − F (t)) t2 = 0, if X has a finite second moment as (1 − F (t)) t2 � � ≤
∞ 

u2f (u) du and the integral 0
∞

u2f (u) du converges. t 

(c) 

E e−sX ∗ 
= 

∞ 1 − F (t) 
e−stdt

E [X]0� � �∞ � � 
e−st e−st∞ 

= λ (1 − F (t)) − 
0 s

f (t) dt− 
s 0 

e−sX1 E 
= λ 

s 
− 

s 

1 − α (s)
= λ 

s 
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