
�	 �

� �

� �

�	 �

� � �	 �

15.083 Integer Programming and Combinatorial Optimization	 Fall 2009

Enumeration and Heuristics

Dynamic Programming

•	 Consider min cx : ax ≥ β, x ∈ {0, 1}n .

•	 Let S = max{|ai| : i = 1, . . . , n}.

•	 Define a directed graph D = (V,A) with vertex set

V = {0, . . . , n} × {−nS, . . . , nS}

•	 and arc set A defined by

(j, δ), (i, δ�) ∈ A j = i − 1 and δ� − δ ∈ {0, ai}⇔

•	 The length of (i − 1, δ), (i, δ) is 0.

•	 The length of (i − 1, δ), (i, δ + ai) is ci.

•	 Any directed path P in D from (0, 0) to (n, β�) for some β� ≥ β yields a feasible solution x:

– xi = 0 if (i − 1, δ), (i, δ) ∈ P	 for some δ;

– xi = 1 if (i − 1, δ), (i, δ + ai)	 ∈ P for some δ.

•	 The length of P is equal to cx.

•	 So we can solve the problem by finding a shortest path from (0, 0) to (n, β�) for some β� ≥ β.

Primal algorithms

•	 Improving search

–	 begin at a feasible solution x(0)

–	 advance along a sequence of feasible solutions x(1), x(2), x(3), . . . with ever-improving
objective value

–	 move between feasible solutions via improving and feasible move directions Δx:

x(t+1) x(t) + λΔx←

–	 Guaranteed to find local optimal solutions under mild conditions

1

Improving search for discrete optimization

•	 Success of branch-and-bound for ILP depends largely on quality of LP relaxations

•	 But we also need “good” feasible solutions

•	 Some ILPs (and discrete optimization models in general) may be especially resistant to
branch-and-bound-type techniques

What can we do? •

•	 Improving search can help us find good feasible solutions

Discrete neighborhoods and move sets

•	 Optimization model with discrete variables

Want the neighborhood of a current solution to be binary/integer ⇒

•	 We can define neighborhoods and control candidates for improving and feasible directions

•	 Example:

max 20x1 − 4x2 + 14x3

s.t. 2x1 + x2 + 4x3 ≤ 5

x1, x2, x3 ∈ {0, 1}

•	 Suppose the current solution is x(t) = (1, 1, 0)

•	 Suppose the neighborhood consists of all feasible solutions that differ in at most one compo­
nent.

•	 Example:

max 20x1 − 4x2 + 14x3

s.t. 2x1 + x2 + 4x3 ≤ 5

x1, x2, x3 ∈ {0, 1}

•	 Neighborhood of x(t) = (1, 1, 0):

(1, 1, 0) + (1, 0, 0) = (2, 1, 0)
(1, 1, 0) + (−1, 0, 0) = (0, 1, 0) feasible

(1, 1, 0) + (0, 1, 0) = (1, 2, 0)
(1, 1, 0) + (0, −1, 0) = (1, 0, 0) feasible and improving

(1, 1, 0) + (0, 0, 1) = (1, 1, 1)
(1, 1, 0) + (0, 0, −1) = (1, 1, −1)

2

Discrete improving search

0.	 Initialization.

•	 Choose any starting feasible solution x(0)

Set solution index t 0
•	 ←

1.	 Stopping.

•	 If no neighboring solution of x(t)is both improving and feasible, stop

x(t) is a local optimal solution
⇒

2.	 Move. Choose some improving feasible move as Δx(t+1)

3.	 Step. Update
x(t+1) x(t) + Δx(t+1) ←

4.	 Increment. Increment t t + 1, return to Step 1 ←

The art of choosing a neighborhood

•	 The solution produced by local search depends on the neighborhood on the move set employed

•	 Larger neighborhoods generally result in superior local optimal solutions, but take longer to
examine

Multistart search

•	 Different initial solutions lead to different local optimal solutions

•	 All globally optimal solutions are local optimal solutions

•	 Idea: start improving search from different initial solutions and take the best one

Escape from local optima: allow nonimproving moves

•	 Another idea: allow nonimproving feasible moves

•	 Rationale: we might be able to “escape” local optimal solutions and move to a better region

•	 Problem: if we don’t “escape” far enough, we will just cycle back to the same local optimal
solution

•	 Three popular methods:

–	 Tabu search

–	 Simulated annealing

–	 Genetic algorithms

3

Tabu search

•	 Tabu search allows nonimproving moves and deals with cycling by temporarily forbidding
moves that would return to a solution recently visited

•	 Makes certain solutions “tabu” (“taboo”?)

0.	 Initialization.

•	 Choose any starting feasible solution x(0)

•	 Choose iteration limit tmax

Set incumbent solution x̂•

Set solution index t 0•	 ←

No moves are tabu •

1.	 Stopping.

•	 If no non-tabu move Δx in move set M leads to a feasible neighbor of x(t), or if t = tmax,
stop.

Incumbent solution x̂ is approximate optimum ⇒

2.	 Move. Choose some non-tabu move Δx ∈M as Δx(t+1)

3.	 Step. Update
x(t+1) x(t) + Δx(t+1) ←

4.	 Incumbent solution. If the objective function value of x(t+1) is superior to that of the
incumbent solution x̂, replace x̂ x(t+1) ←

5.	 Tabu list.

•	 Remove from the tabu list any moves that have been on it for a sufficient number of
iterations

•	 Add a collection of moves that includes any returning from x(t+1) to x(t)

6.	 Increment. Increment t t + 1, return to Step 1 ←

Simulated annealing

•	 Simulated annealing accepts nonimproving moves with probability

•	 Name comes from the annealing process of slowly cooling metals to improve strength

•	 Suppose we are maximizing

•	 If the move is improving (Δobj > 0), it is accepted

4

•	 If the move is nonimproving (Δobj ≤ 0), it is accepted with probability

probability of acceptance = eΔobj/q

where q ≥ 0 is the temperature parameter

•	 The probability of accepting a nonimproving move declines the more it worsens the objective
function

•	 The probability of accepting a nonimproving move declines as the temperature cools

As the algorithm progresses, the temperature cools (q 0)•	 →

•	 This description is for maximization problems

0.	 Initialization.

•	 Choose any starting feasible solution x(0)

•	 Choose iteration limit tmax

•	 Set large initial temperature q

Set incumbent solution x̂
•

Set solution index t 0•	 ←

1.	 Stopping.

•	 If no move Δx in move set M leads to a feasible neighbor of x(t), or if t = tmax, stop.

Incumbent solution x̂ is approximate optimum ⇒

2.	 Provisional move.

•	 Randomly choose a feasible move Δx ∈M as Δx(t+1)

•	 Compute

Δobj = (obj. val. at x(t) + Δx(t+1)) − (obj. val. at x(t))

3.	 Acceptance. If Δx(t+1) improves (Δobj > 0), or with probability eΔobj/q if Δobj ≤ 0,
accept Δx(t+1) and update

x(t+1) x(t) + Δx(t+1) ←

Otherwise, return to Step 2

4.	 Incumbent solution. If the objective function value of x(t+1) is superior to that of the
incumbent solution x̂, replace x̂ x(t+1) ←

2.	 Temperature reduction. If a sufficient number of iterations have passed since the last
temperature change, reduce temperature q

3.	 Increment. Increment t t + 1, return to Step 1 ←

5

Genetic algorithms

•	 Genetic algorithms evolve approximately optimal solutions by operations “combining”
members of an improving population of individual solutions

•	 The best solution so far will always be part of the population

•	 Each generation will consist of a spectrum of solutions

–	 Some will be feasible

–	 Some will be nearly as good as the best

–	 Some will be poor

•	 New solutions are created by “combining” pairs of individual solutions in the population

•	 Standard method for combining solutions: crossover

–	 Take pair of “parent” solutions to produce “children” solutions

–	 Break both parent vectors at same point and swap

–	 Example:

x(1) = (1, 0, 1, 1, 0, | 0, 1, 0, 0)

x(2) = (0, 1, 1, 0, 1, | 1, 0, 0, 1)

⇒ x(3) = (1, 0, 1, 1, 0, | 1, 0, 0, 1)

⇒ x(4) = (0, 1, 1, 0, 1, | 0, 1, 0, 0)

•	 How to select pairs of solutions in current population to crossover?

•	 How to decide which new/old solutions will survive in the next population?

•	 How to maintain diversity in the population?

•	 Elitist strategy: form each new generation as a mix of

–	 Elite solutions: best solutions from previous generation

–	 Immigrant solutions: solutions taken arbitrarily from previous generation to promote
diversity

–	 Crossover solutions

0.	 Initialization.

•	 Choose population size p

•	 Choose initial feasible solutions x(1), . . . , x(p)

6

•	 Set generation limit tmax

•	 Set population subdivisions pe for elites, pi for immigrants, and pc for crossovers

Set generation index t 0•	 ←

1.	 Stopping. If t = tmax, stop and report the best solution of the current population as an
approximate optimum

2.	 Elite. Initialize the population of generation t + 1 with copies of the pe best solutions in the
current generation

3.	 Immigrants. Arbitrarily choose pi new immigrant feasible solutions and include them in
the population of generation t + 1

4.	 Crossovers.

•	 Choose pc/2 (disjoint) pairs of solutions from the generation t population

•	 Execute crossover on each pair at an independently chosen random cut point

•	 Put these crossovers into the population of generation t + 1

5.	 Increment. Increment t t + 1, return to Step 1 ←

7

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

