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15.083 Integer Programming and Combinatorial Optimization	 Fall 2009


Enumeration and Heuristics 

Dynamic Programming 

•	 Consider min cx : ax ≥ β, x ∈ {0, 1}n . 

•	 Let S = max{|ai| : i = 1, . . . , n}. 

•	 Define a directed graph D = (V,A) with vertex set


V = {0, . . . , n} × {−nS, . . . , nS}


•	 and arc set A defined by 

(j, δ), (i, δ�) ∈ A j = i − 1 and δ� − δ ∈ {0, ai}⇔ 

•	 The length of (i − 1, δ), (i, δ) is 0. 

•	 The length of (i − 1, δ), (i, δ + ai) is ci. 

•	 Any directed path P in D from (0, 0) to (n, β�) for some β� ≥ β yields a feasible solution x: 

– xi = 0 if (i − 1, δ), (i, δ) ∈ P	 for some δ; 

– xi = 1 if (i − 1, δ), (i, δ + ai)	 ∈ P for some δ. 

•	 The length of P is equal to cx. 

•	 So we can solve the problem by finding a shortest path from (0, 0) to (n, β�) for some β� ≥ β. 

Primal algorithms 

•	 Improving search 

–	 begin at a feasible solution x(0) 

–	 advance along a sequence of feasible solutions x(1), x(2), x(3), . . . with ever-improving 
objective value 

–	 move between feasible solutions via improving and feasible move directions Δx: 

x(t+1) x(t) + λΔx← 

–	 Guaranteed to find local optimal solutions under mild conditions 
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Improving search for discrete optimization 

•	 Success of branch-and-bound for ILP depends largely on quality of LP relaxations 

•	 But we also need “good” feasible solutions 

•	 Some ILPs (and discrete optimization models in general) may be especially resistant to 
branch-and-bound-type techniques 

What can we do? • 

•	 Improving search can help us find good feasible solutions 

Discrete neighborhoods and move sets 

•	 Optimization model with discrete variables 

Want the neighborhood of a current solution to be binary/integer ⇒ 

•	 We can define neighborhoods and control candidates for improving and feasible directions 

•	 Example: 

max 20x1 − 4x2 + 14x3 

s.t. 2x1 + x2 + 4x3 ≤ 5 

x1, x2, x3 ∈ {0, 1} 

•	 Suppose the current solution is x(t) = (1, 1, 0) 

•	 Suppose the neighborhood consists of all feasible solutions that differ in at most one compo
nent. 

•	 Example: 

max 20x1 − 4x2 + 14x3 

s.t. 2x1 + x2 + 4x3 ≤ 5 

x1, x2, x3 ∈ {0, 1} 

•	 Neighborhood of x(t) = (1, 1, 0): 

(1, 1, 0) + (1, 0, 0) = (2, 1, 0) 
(1, 1, 0) + (−1, 0, 0) = (0, 1, 0) feasible 

(1, 1, 0) + (0, 1, 0) = (1, 2, 0) 
(1, 1, 0) + (0, −1, 0) = (1, 0, 0) feasible and improving 

(1, 1, 0) + (0, 0, 1) = (1, 1, 1) 
(1, 1, 0) + (0, 0, −1) = (1, 1, −1) 
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Discrete improving search 

0.	 Initialization. 

•	 Choose any starting feasible solution x(0)


Set solution index t 0
•	 ← 

1.	 Stopping. 

•	 If no neighboring solution of x(t)is both improving and feasible, stop


x(t) is a local optimal solution
⇒ 

2.	 Move. Choose some improving feasible move as Δx(t+1) 

3.	 Step. Update 
x(t+1) x(t) + Δx(t+1) ← 

4.	 Increment. Increment t t + 1, return to Step 1 ← 

The art of choosing a neighborhood 

•	 The solution produced by local search depends on the neighborhood on the move set employed 

•	 Larger neighborhoods generally result in superior local optimal solutions, but take longer to 
examine 

Multistart search 

•	 Different initial solutions lead to different local optimal solutions 

•	 All globally optimal solutions are local optimal solutions 

•	 Idea: start improving search from different initial solutions and take the best one 

Escape from local optima: allow nonimproving moves 

•	 Another idea: allow nonimproving feasible moves 

•	 Rationale: we might be able to “escape” local optimal solutions and move to a better region 

•	 Problem: if we don’t “escape” far enough, we will just cycle back to the same local optimal 
solution 

•	 Three popular methods: 

–	 Tabu search 

–	 Simulated annealing 

–	 Genetic algorithms 
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Tabu search 

•	 Tabu search allows nonimproving moves and deals with cycling by temporarily forbidding 
moves that would return to a solution recently visited 

•	 Makes certain solutions “tabu” (“taboo”?) 

0.	 Initialization. 

•	 Choose any starting feasible solution x(0) 

•	 Choose iteration limit tmax 

Set incumbent solution x̂• 

Set solution index t 0•	 ← 

No moves are tabu • 

1.	 Stopping. 

•	 If no non-tabu move Δx in move set M leads to a feasible neighbor of x(t), or if t = tmax, 
stop. 

Incumbent solution x̂ is approximate optimum ⇒ 

2.	 Move. Choose some non-tabu move Δx ∈M as Δx(t+1) 

3.	 Step. Update 
x(t+1) x(t) + Δx(t+1) ← 

4.	 Incumbent solution. If the objective function value of x(t+1) is superior to that of the 
incumbent solution x̂, replace x̂ x(t+1) ← 

5.	 Tabu list. 

•	 Remove from the tabu list any moves that have been on it for a sufficient number of 
iterations 

•	 Add a collection of moves that includes any returning from x(t+1) to x(t) 

6.	 Increment. Increment t t + 1, return to Step 1 ← 

Simulated annealing 

•	 Simulated annealing accepts nonimproving moves with probability 

•	 Name comes from the annealing process of slowly cooling metals to improve strength 

•	 Suppose we are maximizing 

•	 If the move is improving (Δobj > 0), it is accepted 
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•	 If the move is nonimproving (Δobj ≤ 0), it is accepted with probability 

probability of acceptance = eΔobj/q 

where q ≥ 0 is the temperature parameter 

•	 The probability of accepting a nonimproving move declines the more it worsens the objective 
function 

•	 The probability of accepting a nonimproving move declines as the temperature cools 

As the algorithm progresses, the temperature cools (q 0)•	 → 

•	 This description is for maximization problems 

0.	 Initialization. 

•	 Choose any starting feasible solution x(0) 

•	 Choose iteration limit tmax 

•	 Set large initial temperature q


Set incumbent solution x̂
• 

Set solution index t 0•	 ← 

1.	 Stopping. 

•	 If no move Δx in move set M leads to a feasible neighbor of x(t), or if t = tmax, stop. 

Incumbent solution x̂ is approximate optimum ⇒ 

2.	 Provisional move. 

•	 Randomly choose a feasible move Δx ∈M as Δx(t+1) 

•	 Compute

Δobj = (obj. val. at x(t) + Δx(t+1)) − (obj. val. at x(t))


3.	 Acceptance. If Δx(t+1) improves (Δobj > 0), or with probability eΔobj/q if Δobj ≤ 0, 
accept Δx(t+1) and update 

x(t+1) x(t) + Δx(t+1) ← 

Otherwise, return to Step 2 

4.	 Incumbent solution. If the objective function value of x(t+1) is superior to that of the 
incumbent solution x̂, replace x̂ x(t+1) ← 

2.	 Temperature reduction. If a sufficient number of iterations have passed since the last 
temperature change, reduce temperature q 

3.	 Increment. Increment t t + 1, return to Step 1 ← 
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Genetic algorithms 

•	 Genetic algorithms evolve approximately optimal solutions by operations “combining” 
members of an improving population of individual solutions 

•	 The best solution so far will always be part of the population 

•	 Each generation will consist of a spectrum of solutions 

–	 Some will be feasible 

–	 Some will be nearly as good as the best 

–	 Some will be poor 

•	 New solutions are created by “combining” pairs of individual solutions in the population 

•	 Standard method for combining solutions: crossover 

–	 Take pair of “parent” solutions to produce “children” solutions 

–	 Break both parent vectors at same point and swap 

–	 Example: 

x(1) = (1, 0, 1, 1, 0, | 0, 1, 0, 0) 

x(2) = (0, 1, 1, 0, 1, | 1, 0, 0, 1) 

⇒ x(3) = (1, 0, 1, 1, 0, | 1, 0, 0, 1) 

⇒ x(4) = (0, 1, 1, 0, 1, | 0, 1, 0, 0) 

•	 How to select pairs of solutions in current population to crossover? 

•	 How to decide which new/old solutions will survive in the next population? 

•	 How to maintain diversity in the population? 

•	 Elitist strategy: form each new generation as a mix of 

–	 Elite solutions: best solutions from previous generation 

–	 Immigrant solutions: solutions taken arbitrarily from previous generation to promote 
diversity 

–	 Crossover solutions 

0.	 Initialization. 

•	 Choose population size p 

•	 Choose initial feasible solutions x(1), . . . , x(p) 
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•	 Set generation limit tmax 

•	 Set population subdivisions pe for elites, pi for immigrants, and pc for crossovers 

Set generation index t 0•	 ← 

1.	 Stopping. If t = tmax, stop and report the best solution of the current population as an 
approximate optimum 

2.	 Elite. Initialize the population of generation t + 1 with copies of the pe best solutions in the 
current generation 

3.	 Immigrants. Arbitrarily choose pi new immigrant feasible solutions and include them in 
the population of generation t + 1 

4.	 Crossovers. 

•	 Choose pc/2 (disjoint) pairs of solutions from the generation t population 

•	 Execute crossover on each pair at an independently chosen random cut point 

•	 Put these crossovers into the population of generation t + 1 

5.	 Increment. Increment t t + 1, return to Step 1 ← 
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