15.083 Integer Programming and Combinatorial Optimization

Fall 2009

Enumeration and Heuristics

Dynamic Programming

- Consider min $\{cx : ax \ge \beta, x \in \{0, 1\}^n\}$.
- Let $S = \max\{|a_i| : i = 1, \dots, n\}.$
- Define a directed graph D = (V, A) with vertex set

$$V = \{0, \dots, n\} \times \{-nS, \dots, nS\}$$

• and arc set A defined by

 $((j, \delta), (i, \delta')) \in A \Leftrightarrow j = i - 1 \text{ and } \delta' - \delta \in \{0, a_i\}$

- The length of $((i-1,\delta), (i,\delta))$ is 0.
- The length of $((i-1,\delta), (i,\delta+a_i))$ is c_i .
- Any directed path P in D from (0,0) to (n,β') for some $\beta' \ge \beta$ yields a feasible solution x:

$$-x_i = 0$$
 if $((i-1,\delta), (i,\delta)) \in P$ for some δ ;

- $-x_i = 1$ if $((i-1,\delta), (i,\delta+a_i)) \in P$ for some δ .
- The length of P is equal to cx.
- So we can solve the problem by finding a shortest path from (0,0) to (n,β') for some $\beta' \ge \beta$.

Primal algorithms

- Improving search
 - begin at a feasible solution $\mathbf{x}^{(0)}$
 - advance along a sequence of feasible solutions $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, $\mathbf{x}^{(3)}$, ... with ever-improving objective value
 - move between feasible solutions via improving and feasible move directions $\Delta \mathbf{x}$:

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \lambda \Delta \mathbf{x}$$

- Guaranteed to find local optimal solutions under mild conditions

Improving search for discrete optimization

- Success of branch-and-bound for ILP depends largely on quality of LP relaxations
- But we also need "good" feasible solutions
- Some ILPs (and discrete optimization models in general) may be especially resistant to branch-and-bound-type techniques
- What can we do?
- Improving search can help us find good feasible solutions

Discrete neighborhoods and move sets

- Optimization model with discrete variables
 - \Rightarrow Want the neighborhood of a current solution to be binary/integer
- We can define neighborhoods and control candidates for improving and feasible directions
- Example:

$$\begin{array}{ll} \max & 20x_1 - 4x_2 + 14x_3 \\ \text{s.t.} & 2x_1 + x_2 + 4x_3 \le 5 \\ & x_1, x_2, x_3 \in \{0, 1\} \end{array}$$

- Suppose the current solution is $\mathbf{x}^{(t)} = (1, 1, 0)$
- Suppose the neighborhood consists of all feasible solutions that differ in at most one component.
- Example:

$$\begin{array}{ll} \max & 20x_1 - 4x_2 + 14x_3\\ \text{s.t.} & 2x_1 + x_2 + 4x_3 \leq 5\\ & x_1, x_2, x_3 \in \{0, 1\} \end{array}$$

• Neighborhood of $\mathbf{x}^{(t)} = (1, 1, 0)$:

(1,1,0) + (1,0,0) = (2,1,0)	
(1, 1, 0) + (-1, 0, 0) = (0, 1, 0)	feasible
(1, 1, 0) + (0, 1, 0) = (1, 2, 0)	
(1, 1, 0) + (0, -1, 0) = (1, 0, 0)	feasible and improving
(1,1,0) + (0,0,1) = (1,1,1)	
(1, 1, 0) + (0, 0, -1) = (1, 1, -1)	

Discrete improving search

- 0. Initialization.
 - Choose any starting feasible solution $\mathbf{x}^{(0)}$
 - Set solution index $t \leftarrow 0$

1. Stopping.

- If no neighboring solution of $\mathbf{x}^{(t)}$ is both improving and feasible, stop
- $\Rightarrow \mathbf{x}^{(t)}$ is a local optimal solution
- 2. Move. Choose some improving feasible move as $\Delta \mathbf{x}^{(t+1)}$
- 3. Step. Update

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \Delta \mathbf{x}^{(t+1)}$$

4. Increment. Increment $t \leftarrow t + 1$, return to Step 1

The art of choosing a neighborhood

- The solution produced by local search depends on the neighborhood on the move set employed
- Larger neighborhoods generally result in superior local optimal solutions, but take longer to examine

Multistart search

- Different initial solutions lead to different local optimal solutions
- All globally optimal solutions are local optimal solutions
- Idea: start improving search from different initial solutions and take the best one

Escape from local optima: allow nonimproving moves

- Another idea: allow nonimproving feasible moves
- Rationale: we might be able to "escape" local optimal solutions and move to a better region
- Problem: if we don't "escape" far enough, we will just cycle back to the same local optimal solution
- Three popular methods:
 - Tabu search
 - Simulated annealing
 - Genetic algorithms

Tabu search

- Tabu search allows nonimproving moves and deals with cycling by temporarily forbidding moves that would return to a solution recently visited
- Makes certain solutions "tabu" ("taboo"?)

0. Initialization.

- Choose any starting feasible solution $\mathbf{x}^{(0)}$
- Choose iteration limit t_{max}
- Set incumbent solution $\hat{\mathbf{x}}$
- Set solution index $t \leftarrow 0$
- No moves are tabu

1. Stopping.

- If no non-tabu move $\Delta \mathbf{x}$ in move set \mathcal{M} leads to a feasible neighbor of $\mathbf{x}^{(t)}$, or if $t = t_{\max}$, stop.
- \Rightarrow Incumbent solution $\hat{\mathbf{x}}$ is approximate optimum
- 2. Move. Choose some non-tabu move $\Delta \mathbf{x} \in \mathcal{M}$ as $\Delta \mathbf{x}^{(t+1)}$
- 3. Step. Update

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \Delta \mathbf{x}^{(t+1)}$$

- 4. Incumbent solution. If the objective function value of $\mathbf{x}^{(t+1)}$ is superior to that of the incumbent solution $\hat{\mathbf{x}}$, replace $\hat{\mathbf{x}} \leftarrow \mathbf{x}^{(t+1)}$
- 5. Tabu list.
 - Remove from the tabu list any moves that have been on it for a sufficient number of iterations
 - Add a collection of moves that includes any returning from $\mathbf{x}^{(t+1)}$ to $\mathbf{x}^{(t)}$
- 6. Increment. Increment $t \leftarrow t + 1$, return to Step 1

Simulated annealing

- Simulated annealing accepts nonimproving moves with probability
- Name comes from the annealing process of slowly cooling metals to improve strength
- Suppose we are maximizing
- If the move is improving $(\Delta obj > 0)$, it is accepted

• If the move is nonimproving $(\Delta obj \leq 0)$, it is accepted with probability

probability of acceptance = $e^{\Delta obj/q}$

where $q \ge 0$ is the **temperature** parameter

- The probability of accepting a nonimproving move declines the more it worsens the objective function
- The probability of accepting a nonimproving move declines as the temperature cools
- As the algorithm progresses, the temperature cools $(q \rightarrow 0)$
- This description is for maximization problems

0. Initialization.

- Choose any starting feasible solution $\mathbf{x}^{(0)}$
- Choose iteration limit t_{max}
- Set large initial temperature q
- Set incumbent solution $\hat{\mathbf{x}}$
- Set solution index $t \leftarrow 0$

1. Stopping.

- If no move $\Delta \mathbf{x}$ in move set \mathcal{M} leads to a feasible neighbor of $\mathbf{x}^{(t)}$, or if $t = t_{\text{max}}$, stop.
- \Rightarrow Incumbent solution $\hat{\mathbf{x}}$ is approximate optimum

2. Provisional move.

- Randomly choose a feasible move $\Delta \mathbf{x} \in \mathcal{M}$ as $\Delta \mathbf{x}^{(t+1)}$
- Compute

 $\Delta obj = (obj. val. at \mathbf{x}^{(t)} + \Delta \mathbf{x}^{(t+1)}) - (obj. val. at \mathbf{x}^{(t)})$

3. Acceptance. If $\Delta \mathbf{x}^{(t+1)}$ improves ($\Delta obj > 0$), or with probability $e^{\Delta obj/q}$ if $\Delta obj \leq 0$, accept $\Delta \mathbf{x}^{(t+1)}$ and update

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \Delta \mathbf{x}^{(t+1)}$$

Otherwise, return to Step 2

- 4. Incumbent solution. If the objective function value of $\mathbf{x}^{(t+1)}$ is superior to that of the incumbent solution $\hat{\mathbf{x}}$, replace $\hat{\mathbf{x}} \leftarrow \mathbf{x}^{(t+1)}$
- 2. Temperature reduction. If a sufficient number of iterations have passed since the last temperature change, reduce temperature q
- 3. Increment. Increment $t \leftarrow t + 1$, return to Step 1

Genetic algorithms

- Genetic algorithms evolve approximately optimal solutions by operations "combining" members of an improving **population** of individual solutions
- The best solution so far will always be part of the population
- Each generation will consist of a spectrum of solutions
 - Some will be feasible
 - Some will be nearly as good as the best
 - Some will be poor
- New solutions are created by "combining" pairs of individual solutions in the population
- Standard method for combining solutions: crossover
 - Take pair of "parent" solutions to produce "children" solutions
 - Break both parent vectors at same point and swap
 - Example:

$$\mathbf{x}^{(1)} = (1, 0, 1, 1, 0, | 0, 1, 0, 0)$$
$$\mathbf{x}^{(2)} = (0, 1, 1, 0, 1, | 1, 0, 0, 1)$$
$$\Rightarrow \mathbf{x}^{(3)} = (1, 0, 1, 1, 0, | 1, 0, 0, 1)$$
$$\Rightarrow \mathbf{x}^{(4)} = (0, 1, 1, 0, 1, | 0, 1, 0, 0)$$

- How to select pairs of solutions in current population to crossover?
- How to decide which new/old solutions will survive in the next population?
- How to maintain diversity in the population?
- Elitist strategy: form each new generation as a mix of
 - Elite solutions: best solutions from previous generation
 - Immigrant solutions: solutions taken arbitrarily from previous generation to promote diversity
 - Crossover solutions

0. Initialization.

- Choose population size p
- Choose initial feasible solutions $x^{(1)}, \ldots, x^{(p)}$

- Set generation limit t_{max}
- Set population subdivisions p_e for elites, p_i for immigrants, and p_c for crossovers
- Set generation index $t \leftarrow 0$
- 1. Stopping. If $t = t_{\text{max}}$, stop and report the best solution of the current population as an approximate optimum
- 2. Elite. Initialize the population of generation t + 1 with copies of the p_e best solutions in the current generation
- 3. Immigrants. Arbitrarily choose p_i new immigrant feasible solutions and include them in the population of generation t + 1

4. Crossovers.

- Choose $p_c/2$ (disjoint) pairs of solutions from the generation t population
- Execute crossover on each pair at an independently chosen random cut point
- Put these crossovers into the population of generation t + 1
- 5. Increment. Increment $t \leftarrow t + 1$, return to Step 1

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.