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15.083: Integer Programming and Combinatorial Optimization 
Final Exam Solutions 

Problem (1) 

(a) F 

(b) F 

(c) F 

(d) T 

(e) F 

(f) F 

(g) F 

(h) F 

(i) T 

Problem (2) 

(a) For x ∈ C, by the non-negativity of x and 1 we have λ 

n n� ai 
� ai b � 

λ 
�xi ≤ 

λ
xi ≤ 

λ 
i=1 i=1 

Since x is restricted to take integer values and each lhs coefficient is integral, we can round down the rhs to 
obtain the desired inequality. 

(b) We write the inequality by fx ≤ b. By (a), this inequality is valid for C. λ < b < λn ⇒ 1 ≤ � λ
b � ≤ n − 1. 

Let F be the face induced by fx = g. Clearly all integer points with k = � λ
b � components equal to 1 (the 

rest equal to zero) are in F. Let hx = d be any equality that holds on F. Consider the points x1, x2 ∈ F with 

x 1 = (1, 1, · · · , 1, 1, 0, 0, · · · , 0) 
x 2 = (1, 1, · · · , 1, 0, 1, 0, · · · , 0) 

both with k components equal to 1. We then have hx1 − hx2 = 0 ⇒ hk = hk−1. Extending this argument, 
we can obtain hi = hj for all pairs i, j. Thus h = αf for some α and by theorem A.2 in the book fx ≤ b 
must be facet defining. 

Problem (3) 

(a) We define decision variables x ∈ {0, 1}|A| such that xe = 1 if e ∈ B, 0 otherwise. We define the sets 
δ+(v), δ−(v) to be the set of arcs entering/leaving node v respectively. We can the define the following 
binary optimization model for our problem: 
max wexe 

e∈A 

subject to 
xe + xe� ≤ 1 ∀v ∈ V, e ∈ δ+(v), e� ∈ δ−(v) 

xe ∈ {0, 1} ∀e ∈ A 
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(b) This polyhedron is not in general integral. Consider the graph one i, j, k with arcs (i, j), (j, k), (k, i). The 
solution (1/2, 1/2, 1/2) is a vertex since it cannot be written as a convex combination of feasible integer 
vectors. 

(c) If the graph is bipartite, then we can divide the edges into two partites as follows : one partite 
corresponding to arcs with heads in the first node partite, the other partite corresponding to arcs with 
heads in the second node partite). Then the constraint matrix is the node-edge incidence matrix of an 
undirected bipartite graph which is TU, so the polyhedron is integral. 

(d) Consider a directed odd cycle C in the graph. Adding up all the constraints corresponding to the edges in 
the cycle and the nodes the visit yields: 

� 
≤ |C| . So the inequality 

� 
≤ |C|−1 is valid for the a∈C xa 2 a∈C xa 2 

integer hull but not the relaxation. 

(e) We can solve the separation problem over the odd-cycle inequalities in polynomial time and have a 
polynomial number of head-tail constraints (at most one for each pair of arcs) which can be checked in 
polynomial time. Therefore we can solve the separation problem over our new polytope in polynomial time 
and use ellipsoid to solve the optimization in polynomial time. 

(f) Not integral in general. As discussed in part (g) which follows, our polytope is equivalent to the stable set 
polytope with some of the cycle inequalities included for a dual graph which is not in general integral. The 
directed cycle inequalities do not capture all cycle inequalities in this dual graph. For instance take the 
graph on 5 nodes with arcs (1, 2), (3, 1), (4, 3), (3, 5), (5, 1). 

(g) It is a stable set relaxation polytope on a ”dual” undirected graph where we have a node for each arc in the 
primal with an edge between them if the tail of one is the head of the other. 

Problem (4) 

(a) Let G = (V,E) be an instance of the Steiner tree problem, consider the complete graph G� on V and define 
the cost of an edge {u, v} in G� to be the cost of a shortest u-v-path in G. Note that we may calculate the 
shortest u-v-path for each pair in polynomial time, so we have a polynomial time transformation of G to G�. 
Since the cost of each arc in G� is a shortest path cost in G, we have that G� satisfies the triangle inequality, 
and thus is an instance of the metric Seiner tree problem on a complete graph. Note that any solution T for 
G is feasible for G� and the realization in G� must have cost no greater than the realization in G (since the 
cost of each arc {u, v} ∈ E is replaced by the shortest path cost in G�). Thus the cost of the optimal tree for 
G� cannot exceed that for G. Given an optimal solution T � to this new metric Steiner tree problem, we can 
obtain a Steiner tree on G with no greater cost by replacing each edge {u, v} in T � by the shortest u-v path 
calculated in G; this may lead to extra edges in the tree which we can simply delete to obtain a tree with no 
greater cost. 

(b) If we traverse the optimal Steiner tree twice, we obtain a Euler tour visiting all nodes in R. We can 
transform this Euler tour into a hamiltonian tour with no greater cost by considering a hamiltonian tour in 
the order the nodes are visiting on the Steiner 2-tour since our graph is metric. Thus TSP ≤ 2MStT , and 
MST ≤ TSP yielding the desired result. 

(c) Consider an instance with n required vertices i = 1, ..., n and one Steiner vertex n + 1 with 
ci,j = 2 1 ≤ i, j ≤ n and ci,n+1 = 1 1 ≤ i ≤ n. The cost on the minimum spanning tree (MST) is 2 ∗ (n − 1) 
whereas the cost of the minimum Steiner tree (MStT) is n. Thus MST = 2n−1 2.MStT n →n→∞ 

Problem (5) 

(a) 
T

min (ftxt + ptyt + htst) 
t=1 

subject to 
st−1 + yt − dt = st t = 1, ..., T 

st ≥ 0 t = 1, ..., T − 1 
s0, sT = 0��T 

� 
yt ≤ s=t ds xt t = 1, ..., T 

xt ∈ {0, 1} t = 1, ..., T 
yt ≥ 0 t = 1, ..., T 
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(b) If	 i∈C xi = 0 then the inequality is clearly valid since xi = 0 ⇒ yi = 0. So we assume i∈C xi > 0. We 
prove by induction on k. If k = 0 then we have s0 ≥ 0 which is valid. Suppose the inequality is valid for 
k ¯ = 0, ..., k − 1. We have two cases: 

(i)	 k �∈ C: Then 

k−1

yi ≤ dt xi + sk−1 

i∈C i∈C t=i 

k−1

= dt xi + sk + dk − yk 

i∈C t=i 

k−1

≤ dt xi + sk + dk 

i∈C t=i 

Since at least 1 of the xi = 1 for i ∈ C, we can pull the existing dk term into that summation and add 
the dk term to all others to obtain: 

k

yi	 ≤ dt xi + sk 

i∈C i∈C t=i 

(ii)	 k ∈ C: Then 

k−1

yi ≤ dt xi + sk−1 + yk 

i∈C i∈C\{k} � 
t=i � � k−1

= dt xi + sk + dk 

i∈C\{k} t=i 

If xk = 1 then we can add a dk term to each summation and pull the existing dk term in by changing 
the range of summation from C\{k} to C to obtain the desired inequality. If xk = 0 then as in (i), 
there is an i ∈ C\{k} for which xi = 1 and we can pull the existing dk term into that summation and 
add dk to all others to obtain the desired inequality. 

Problem (6) 

(a) 

(i) For b = 2
3 : 
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(ii) We consider the sets S1 = S ∪ {x : x ≤ �b� and S2 = S ∪ {x : x ≥ �b� + 1. For S1, we multiply x ≤ �b�
by (1 − f0) and add 0 ≤ y to obtain (1 − f0)(x − �b�) ≤ y as a valid inequality. For S2 we multiply 
x ≥ �b� + 1 by f0 to obtain −f0 ≥ −f0(x − �b�) and add b ≥ x − y (valid for S1 ⊆ S) to obtain 

−f0 + b ≥ −f0(x − �b�) + x − y 

⇒ 

y ≥ f0 − b − f0x + f0�b� + x 

= (1 − f0)(x − �b�) 

We then have (1 − f0)(x − �b�) ≤ y is valid for S1 ∪ S2 = S which rearranges to the desired inequality. 

(iii) see (i) above 

(b) 

(i) Here we simply take the inequality ax + gy ≤ b and round down the lhs coefficients for xj : fj ≤ f0 

(which we can do since x is non-negative), and drop the non-negative term j:gj ≥0 gj yj . We can write 
this algebraically as: 

j:fj ≤f0 
�aj �xj + j:fj >f0 

aj xj + j:gj <0 gj yj 

= j:fj ≤f0 
(aj − fj )xj + j:fj >f0 

aj xj + j:gj <0 gj yj 

= n
j=1 aj xj − fj xj + j:gj <0 gj yj 

j:fj ≤f0 

≥0 

≤ j
n 
=1 aj xj + j:gj <0 gj yj 

≤ j
n 
=1 aj xj + j

n 
=1 gj yj 

≤ b 

(x,y)∈P 

(ii) 
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� � � � 

� � � � 

� � � 

���� 

� � � � 

� �
� � � 

� �� � 

w − z = �aj �xj + (�aj �)xj + gj yj − (1 − aj + �aj �)xj 

j:fj ≤f0 j:fj >f0 j:gj <0 j:fj >f0 

= �aj �xj + (�aj � + 1)xj + gj yj − (1 − aj + �aj �)xj 

j:fj ≤f0 j:fj >f0 j:gj <0 j:fj >f0 

= �aj �xj + aj xj + gj yj 

j:fj ≤f0 j:fj >f0 j:gj <0 

≤ b 

(i) 

(iii) By (b)(ii) we have that (x, y) ∈ conv(T ) such that there exist a mappings w, z as defined which satisfy 
(w, z) in this polytope. Thus by (a)(ii): 

1 
z�b� ≥ w − 

1 − f0 ⎛ ⎞ � � 1 � � 
= �aj �xj + (�aj �)xj − ⎝− gj yj + (1 − fj )xj ⎠ 

j:fj ≤f0 j:fj >f0 
1 − f0 j:gj <0 j:fj >f0 ⎛ ⎞ � � 1 � � 

= �aj �xj + (�aj � + 1)xj − ⎝− gj yj + (1 − fj )xj ⎠ 

j:fj ≤f0 j:fj >f0 
1 − f0 j:gj <0 j:fj >f0 

= 
n

�aj �xj + xj +
1 

gj yj − 
1 − fj 

xj1 − f0 1 − f0j=1 j:fj >f0 j:gj <0 j:fj >f0 

n � �� � 1 − fj 1 � 
= �aj �xj + 1 − 

1 − f0 
xj + 1 − f0 

gj yj 

j=1 j:fj >f0 j:gj <0 

n � �� � fj − f0 1 � 
= �aj �xj + 1 − f0 

xj + 1 − f0 
gj yj 

j=1 j:fj >f0 j:gj <0 

n n � � 

= 
� 

�aj �xj + 
� (fj 

1
−
− 

f

f
0

0 

)+ 

xj + 1 − 
1 
f0 

� 
gj yj 

j=1 j=1 j:gj <0 

(c) Adding non-negative slack to obtain ax + gy + s = b is equivalent to adding a new continuous variable �n �p+1 
yp+1 := s, gp+1 := 1 and examining the equality j=1 aj xj + j=1 gj yj . The associated GMI cut is: 

� fj 
� 1 − fj 

� gj 
� gj 1 

j:fj ≤f0 
f0 

xj + 
j:fj >f0 

1 − f0 
xj + 

j∈{1,...,n}:gj >0 
f0 

yj − 
j:gj <0 

1 − f0 
yj + 

f0 
s ≥ 1 

Plugging in s = b − j
n 
=1 aj xj − j

p 
=1 gj yj and multiplying through by f0 we obtain: 

n � � � �
1 − fj 

xj + 1 + 
f0 �aj �xj + fj − f0 1 − f0 1 − f0 

gj yj ≤ b − f0 = �b� 
j=1 j:fj >f0 j:gj <0 

which is equivalent to: 

n � �� 
�aj �xj + 

� f

1 
j 

−
− 

f

f

0

0 
xj + 1 − 

1 
f0 

� 
gj yj ≤ b − f0 = �b� 

j=1 j:fj >f0 j:gj <0 

� (fj −f0)+ 
n = j=1 1−f0 

xj 
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