15.083: Integer Programming and Combinatorial Optimization Problem Set 3 Solutions

Due 9/30/2009

Problem (3.13)

- (a) $\emptyset \in \mathcal{I}$ since $\emptyset \in \mathcal{I}_1$ and $\emptyset \in \mathcal{I}_2$ Let $T = J_1 \cup J_2 \in \mathcal{I}$. For any $T' \subset T$ we construct $J'_i = J_i \setminus ((T \setminus T') \cap N_i)$ for i = 1, 2. We have $J'_i \in \mathcal{I}_i$ since M_i is a matroid. Thus $T' = J'_1 \cup J'_2 \in \mathcal{I}$ Let $T \subseteq N$. Since $N_1 \cap N_2 = \emptyset$, any basis, $B = J_1 \cup J_2$, of T is maximal iff J_1 and J_2 are maximal wrt their corresponding independence systems. Thus every maximal independent set in T has the same cardinality.
- (b) $\emptyset \in \mathcal{I}$ trivially For any $T' \subseteq T \in \mathcal{I}$, we have $|T' \cap N_i| \leq |T \cap N_i| \leq 1$, thus $T' \in \mathcal{I}$ For any $T \subseteq N$ every maximal basis of T has exactly one element in each partition that T covers, so all maximal independent sets have the same cardinality

$$\max \sum_{v} x_{v}$$

subject to
$$\sum_{v \in \bar{S}'} x_{v} \leq r_{1}(\bar{S}') \quad \forall \bar{S}' \subseteq \bar{S}$$
$$\sum_{v \in \bar{S}'} x_{v} \leq r_{2}(\bar{S}') \quad \forall \bar{S}' \subseteq \bar{S}$$
$$x_{v} \in \mathbb{Z}_{+} \quad \forall v \in \bar{S}$$

This polymatroid intersection problem with have objective function value |S| if and only if S can be partitioned as desired.

Problem (3.14) Hamitonian path is the intesection of a forest matroid on the underlying directed graph, a partition matroid over the outgoing arcs of each node, and a partition matroid over the incoming arcs of each node.

Problem (3.15)

(a) Define
$$x(S) = P\left(\left(\bigcap_{i \in S} A_i\right) \cap \left(\bigcap_{i \notin S} A_i^c\right)\right)$$
. We then can model our problem as follows:

 $\min x(\emptyset)$ subject to $\sum_{\substack{S:i \in S \\ S:i \in S}} x(S) = p_i \quad \forall i \in N$ $\sum_{\substack{S:i,j \in S \\ \sum}} x(S) \geq p_{ij} \quad \forall (i,j) \in E$ $\sum_{\substack{S \in N \\ S \in N}} x(S) = 1$ $\forall S \subseteq N$ x(S)

(b) The dual has the following form:

$$\max \sum_{i \in N} p_i u_i + \sum_{(i,j) \in E} p_{ij} y_{ij} + z$$

subject to
$$\sum_{i \in S} u_i + \sum_{(i,j) \in E: i, j \in S} y_{ij} + z \leq 0 \quad \forall S \subseteq N, S \neq \emptyset$$
$$z \leq 1$$
$$y_{ij} \geq 0 \quad \forall (i,j) \in E$$

Weak duality gives us that $P\left(\bigcap_{i\in N}A_i^c\right) = x(\emptyset) \ge \sum_{i\in N}p_iu_i + \sum_{(i,j)\in E}p_{ij}y_{ij} + z$ for all dual feasible solutions. Hence if we pick z = 1 and $u_i = -1 \forall i \in N$, and maximize over the variables y_{ij} , we obtain:

 $P\left(\bigcap_{i\in N} A_i^c\right) \ge 1 - \sum_{i\in N} p_i + Z \text{ where:}$ $Z = \max \sum_{\substack{(i,j)\in E \\ \text{subject to}}} p_{ij}y_{ij}$ subject to $\sum_{\substack{(i,j)\in E: i,j\in S \\ (i,j)\in E: i,j\in S}} y_{ij} \le |S| - 1 \quad \forall S \subseteq N, S \neq \emptyset$ $y_{ij} \geq 0 \quad \forall (i,j) \in E$

which is the maximum forest problem on the graph (N, E).

Problem (3.19) The dual problem is given by: $\max \sum_{i \in V} p_i b_i - \sum_{(i,j) \in A} p_{ij} u_{ij}$ subject to

subject to $\begin{array}{c} p_{ij} \geq p_i - p_j - c_{ij} \forall (i,j) \in A \\ p_{ij} \geq 0 & \forall (i,j) \in A \end{array}$ Let p^* be an optimal dual solution. Note that since $u \geq 0$ we must have $p_{ij}^* = (p_i^* - p_j^* - c_{ij})^+$. We use the following randomized rounding procedure: generate a uniform random number on [0,1] U and set $p_i = \lfloor p_i^* \rfloor$ if $p_i^* - \lfloor p_i^* \rfloor \leq U$ or $p_i = \lfloor p_i^* \rfloor + 1$ otherwise. $\begin{array}{c} p_{ij} = p_i - p_j - c_{ij} \text{ otherwise.} \end{array}$ We then set $p_{ij} = 0$ if $p_{ij}^* = 0$ or $p_{ij} = p_i - p_j - c_{ij}$ otherwise. That $E[\sum_{i \in V} p_i b_i - \sum_{(i,j) \in A} p_{ij} u_{ij}] = \sum_{i \in V} p_i^* b_i - \sum_{(i,j) \in A} p_{ij}^* u_{ij}$ is trivial, so we need only dual feasible Checking the following 8 cases exploiting the fact that

 $p_i - p_j - c_{ij}$ is integral shows feasibility:

 $\{p_i^* = 0, p_{ij}^* \ge 0\} \times \{p_i = \lfloor p_i^* \rfloor, p_i = \lfloor p_i^* \rfloor + 1\} \times \{p_j = \lfloor p_j^* \rfloor, p_j = \lfloor p_j^* \rfloor + 1\}.$

Problem (3.21) We consider the union of the set of breakpoints of all men for all women and call this set S. S divides [0,1] into some number k of disjoint partitions with length p_i , i = 1, ..., k. If our random number U falls in the i^{th} partition, it generates the i^{th} stable matching x^i . Each of these matchings is distinct by construction. We have $x = \sum_{i} p_i x^i$ with $\sum_{i} p_i = 1$.

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.