15.083: Integer Programming and Combinatorial Optimization Problem Set 3 Solutions

Due 9/30/2009

Problem (3.13)

(a) $\emptyset \in \mathcal{I}$ since $\emptyset \in \mathcal{I}_{1}$ and $\emptyset \in \mathcal{I}_{2}$

Let $T=J_{1} \cup J_{2} \in \mathcal{I}$. For any $T^{\prime} \subset T$ we construct $J_{i}^{\prime}=J_{i} \backslash\left(\left(T \backslash T^{\prime}\right) \cap N_{i}\right)$ for $i=1,2$. We have $J_{i}^{\prime} \in \mathcal{I}_{i}$ since M_{i} is a matroid. Thus $T^{\prime}=J_{1}^{\prime} \cup J_{2}^{\prime} \in \mathcal{I}$
Let $T \subseteq N$. Since $N_{1} \cap N_{2}=\emptyset$, any basis, $B=J_{1} \cup J_{2}$, of T is maximal iff J_{1} and J_{2} are maximal wrt their corresponding independence systems. Thus every maximal independent set in T has the same cardinality.
(b) $\emptyset \in \mathcal{I}$ trivially

For any $T^{\prime} \subseteq T \in \mathcal{I}$, we have $\left|T^{\prime} \cap N_{i}\right| \leq\left|T \cap N_{i}\right| \leq 1$, thus $T^{\prime} \in \mathcal{I}$
For any $T \subseteq N$ every maximal basis of T has exactly one element in each partition that T covers, so all maximal independent sets have the same cardinality
(c) Create the set $\bar{N}=N \times\{0,1\}$ let $N_{1}=\{(n, 0) \in \bar{N}\}, N_{2}=\{(n, 1) \in \bar{N}\}$, let $\mathcal{F}_{1}=\{F \times\{0\}: F \in \mathcal{F}\}$, $\mathcal{F}_{2}=\{F \times\{1\}: F \in \mathcal{F}\}$. With $\left(N_{1}, \mathcal{F}_{1}\right),\left(N_{2}, \mathcal{F}_{2}\right)$ we satisfy the assumptions of a) and can create a matroid M_{1} of the form discussed in a). Next we form a partition matroid M_{2} over \bar{N} be taking the partitions $\{(v, 0),(v, 1)\} \forall v \in N . \mathrm{S}$ is of the desired form if and only if it is the projection of an element in the intersection of these two matroids. We can model this explicitly as an optimization problem over a polymatroid intersection polyhedron by creating the set $\bar{S}=S \times\{0,1\}$ and solving the problem:

$$
\begin{array}{ll}
\max \sum_{v} x_{v} & \\
\text { subject to } & \\
\sum_{v \in \bar{S}^{\prime}} x_{v} \leq r_{1}\left(\bar{S}^{\prime}\right) & \forall \bar{S}^{\prime} \subseteq \bar{S} \\
\sum_{v \in \bar{S}^{\prime}} x_{v} \leq r_{2}\left(\bar{S}^{\prime}\right) & \forall \bar{S}^{\prime} \subseteq \bar{S} \\
x_{v} \in \mathbb{Z}_{+} & \forall v \in \bar{S}
\end{array}
$$

This polymatroid intersection problem with have objective function value $|S|$ if and only if S can be partitioned as desired.

Problem (3.14) Hamitonian path is the intesection of a forest matroid on the underlying directed graph, a partition matroid over the outgoing arcs of each node, and a partition matroid over the incoming arcs of each node.

Problem (3.15)

(a) Define $x(S)=P\left(\left(\bigcap_{i \in S} A_{i}\right) \cap\left(\bigcap_{i \notin S} A_{i}^{c}\right)\right)$. We then can model our problem as follows:

$$
\begin{aligned}
& \min x(\emptyset) \\
& \text { subject to } \\
& \qquad \begin{aligned}
\sum_{S: i \in S} x(S) & =p_{i} \quad \forall i \in N \\
\sum_{S: i, j \in S} x(S) & \geq p_{i j} \quad \forall(i, j) \in E \\
\sum_{S \subseteq N} x(S) & =1 \\
x(S) & \geq 0 \quad \forall S \subseteq N
\end{aligned}
\end{aligned}
$$

(b) The dual has the following form:

$$
\begin{aligned}
& \max \sum_{i \in N} p_{i} u_{i}+\sum_{(i, j) \in E} p_{i j} y_{i j}+z \\
& \text { subject to } \\
& \sum_{i \in S} u_{i}+\sum_{(i, j) \in E: i, j \in S} y_{i j}+z
\end{aligned} \begin{aligned}
& \leq 0 \quad \forall S \subseteq N, S \neq \emptyset \\
z & \leq 1 \\
y_{i j} & \geq 0 \quad \forall(i, j) \in E
\end{aligned}
$$

Weak duality gives us that $P\left(\bigcap_{i \in N} A_{i}^{c}\right)=x(\emptyset) \geq \sum_{i \in N} p_{i} u_{i}+\sum_{(i, j) \in E} p_{i j} y_{i j}+z$ for all dual feasible solutions.
Hence if we pick $z=1$ and $u_{i}=-1 \forall i \in N$, and maximize over the variables $y_{i j}$, we obtain:
$P\left(\bigcap_{i \in N} A_{i}^{c}\right) \geq 1-\sum_{i \in N} p_{i}+Z$ where:
$Z=\max \sum_{(i, j) \in E} p_{i j} y_{i j}$
subject to

$$
\begin{array}{rlrl}
\sum_{(i, j) \in E: i, j \in S} y_{i j} & \leq|S|-1 & \forall S \subseteq N, S \neq \emptyset \\
y_{i j} & \geq 0 & & \forall(i, j) \in E
\end{array}
$$

which is the maximum forest problem on the graph (N, E).

Problem (3.19) The dual problem is given by:
$\max \sum_{i \in V} p_{i} b_{i}-\sum_{(i, j) \in A} p_{i j} u_{i j}$
subject to

$$
\begin{array}{ll}
p_{i j} \geq p_{i}-p_{j}-c_{i j} \forall(i, j) \in A & \\
p_{i j} \geq 0 & \forall(i, j) \in A
\end{array}
$$

Let p^{*} be an optimal dual solution. Note that since $u \geq 0$ we must have $p_{i j}^{*}=\left(p_{i}^{*}-p_{j}^{*}-c_{i j}\right)^{+}$. We use the following randomized rounding procedure: generate a uniform random number on $[0,1] \mathrm{U}$ and set $p_{i}=\left\lfloor p_{i}^{*}\right\rfloor$ if $p_{i}^{*}-\left\lfloor p_{i}^{*}\right\rfloor \leq U$ or $p_{i}=\left\lfloor p_{i}^{*}\right\rfloor+1$ otherwise. . We then set $p_{i j}=0$ if $p_{i j}^{*}=0$ or $p_{i j}=p_{i}-p_{j}-c_{i j}$ otherwise. That $E\left[\sum_{i \in V} p_{i} b_{i}-\sum_{(i, j) \in A} p_{i j} u_{i j}\right]=\sum_{i \in V} p_{i}^{*} b_{i}-\sum_{(i, j) \in A} p_{i j}^{*} u_{i j}$ is trivial, so we need only show that our integer solution p is dual feasible. Checking the following 8 cases exploiting the fact that $p_{i}-p_{j}-c_{i j}$ is integral shows feasibility:
$\left\{p_{i j}^{*}=0, p_{i j}^{*} \geq 0\right\} \times\left\{p_{i}=\left\lfloor p_{i}^{*}\right\rfloor, p_{i}=\left\lfloor p_{i}^{*}\right\rfloor+1\right\} \times\left\{p_{j}=\left\lfloor p_{j}^{*}\right\rfloor, p_{j}=\left\lfloor p_{j}^{*}\right\rfloor+1\right\}$.
Problem (3.21) We consider the union of the set of breakpoints of all men for all women and call this set S. S divides $[0,1]$ into some number k of disjoint partitions with length $p_{i}, i=1, \ldots, k$. If our random number U falls in the $i^{\text {th }}$ partition, it generates the $i^{\text {th }}$ stable matching x^{i}. Each of these matchings is distinct by construction. We have $x=\sum_{i} p_{i} x^{i}$ with $\sum_{i} p_{i}=1$.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

