15.083: Integer Programming and Combinatorial Optimization Problem Set 6 Solutions

Problem (9.2(b)) Recall that Gomory cuts are obtained from fractional rows in the final simplex tableau and have the form $\sum_{j \in N}\left(\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor\right) x_{j} \geq \bar{b}_{i}-\left\lfloor\bar{b}_{i}\right\rfloor$.
Problem (9.4) We will obtain the integer hull by performing successive Chvatal closures. We end up needing only the first Chvatal closure. We obtain the Chvatal closure by finding a TDI description for P with integral rhs and rounding down the lhs. The minimal faces for our inItial description of P are $(0,0,0),(0,0,8 / 3)$, $(0,4,0)$, and $(8,0,0)$. We will now check that for each minimal face, we have tight constraints who's rhs define an integral generating wet for their respective cones:

1. $(0,0,0)$: the tight constraints $(-1,0,0),(0,-1,0),(0,0,-1)$ are unit vectors in their respective orthants so clearly define an integral basis.
2. $(0,0,8 / 3)$: here we need to add the generator $(0,0,1)$ with the tight constraint $x_{3} \leq 8 / 3$ item $(0,4,0)$: here we need to add the generator $(0,1,0)$ with the tight constraint $x_{2} \leq 4$
3. $(8,0,0)$: the tight constraints $(0,-1,0),(0,0,-1),(1,2,3)$ already form an integral basis.

Rounding down the rhs of the constraint $x_{3} \leq 8 / 3 \Rightarrow x_{3} \leq 2$ we obtain a polyhedron with all integral vertices, giving us P_{I}.

Problem (9.8)

(a) Consider any minimal face of the stable set polyhedron and the constraints $A_{F} x=b_{F}$ that are binding. The stable set polyhedron is known to have all vertices with entries $0,1 / 2,1$ where entries of $1 / 2$ appear only around cycles. Thus we can decompose A_{F} into a block diagonal matrix $\left(\begin{array}{cccc}A_{V} & 0 & 0 & \cdots \\ 0 & A_{C_{1}} & 0 & \cdots \\ 0 & 0 & \ddots & 0\end{array}\right)$. Where A_{V} is the node-edge incidence matrix of a bipartite graph (nodes with value 0 in one partite, value 1 in the other) plus some unit vectors and is thus unimodular; and therefore TDI in any system. The matrices $A_{C_{j}}$ correspond to stability constraints along disjoint cycles. The only integral points in $y \in \operatorname{cone}\left(\left(a_{C_{j}}\right)_{i}\right)$ that we could not generate from integer multiples of $\left(a_{C_{j}}\right)_{i}$ are of the form $y_{i}=k$ for $i \in C, k$ odd for some cycle C (since we can only generate $y_{i}=2$ by adding the tight inequalities around a cycle). Thus adding the valid constraints $\sum_{e \in C} x_{e} \leq \frac{|C|}{2} \forall$ cycles C completes the integral generating set and leaves us with a TDI system. Rounding down the rhs of this system then gives us P_{1}. But the inequalities $\sum_{e \in C} x_{e} \leq\left\lfloor\frac{|C|}{2}\right\rfloor \forall$ cycles C are valid for $P_{1 / 2}$ so $P_{1 / 2}=P_{1}$.
(b) We need only show that $P_{1 / 2}=\operatorname{conv}(\mathfrak{F})$. Assume $P_{1 / 2}$ is not integral. Then there exists some c for which the unique maximum of $c x$ over $P_{1 / 2}$ contains a fractional entry x_{i}. We have $x_{j}>0 \Rightarrow c_{j}>0$ since we could otherwise decrease x_{j}, remain feasible and have the same objective. Since x_{i} is fractional, we have $c_{i}>0$ and either $x_{i-1}+x_{i}=1$ or $x_{i}+x_{i+1}=1$, otherwise we could increase x_{i}. wlog assume $x_{i-1}+x_{i}=1$. Suppose that all variables with indices from \underline{i} to \bar{i} are fractional and satisfy $x_{i}+x_{i-1}=1 i=\underline{i}+1 \ldots \bar{i}$. We claim that either $x_{\bar{i}}+x_{\bar{i}+1}=1$ or $x_{\underline{i}}+x_{\underline{i}-1}=1$; for if not $x_{\bar{i}+1}=x_{\underline{i}-1}=0$, and we can shift weight between our fractional variables while remaining feasible and attaining an objective value no worse than x , contradicting the unique minimality of x . Therefore we can continue to grow our set of fractional variables until we show that all x_{i} are fractional and $x_{i}+x_{i-1}=1, x_{n}+x_{1}=1$. Adding up these equalities we have $2 \sum_{i} x_{i}=|C|$ which violates the odd-cycle inequality. Thus $P_{1 / 2}$ can have no fractional vertices.

Problem (11.3) Note that the optimal integer objective is 1 since n is odd. In any branch and bound node, let S_{0} be the set of indices from $1, \ldots, n$ for which the corresponding variable is set to 0 , and S_{1} be the set of indices for which the corresponding variable is set to 1 . This yields the following LP relaxation:

$$
\min x_{n+1}: x_{i} \in[0,1] x_{n+1}+\sum_{i \notin S_{0} \cup S_{1}} 2 x_{i}=n-2\left|S_{1}\right|
$$

As long as $\left|S_{0}\right|,\left|S_{1}\right| \leq \frac{n-1}{2}$, the optimal value of this relaxation is 0 . Since $n-2\left|S_{1}\right|$ is odd, any optimal solution must contain at least one fractional component and we can continue branching. We will continue branching until we reach infeasible nodes where $\left|S_{0}\right|$ or $\left|S_{1}\right|$ are strictly greater than $\frac{n-1}{2}$ or when $\left|S_{0}\right|=\left|S_{1}\right|=\frac{n-1}{2}$ and we obtain the optimal integer solution with objective 0 . When we obtain the optimal solution in some node, we cannot prove optimality through LP bounds until we exhaust all other feasible branches (since they will have a lower bound of 0 . Since any node with less than $\frac{n-1}{2}$ set values is feasible, we must explore at least $2^{\frac{n-1}{2}}$ nodes.

Problem (11.5) Let x_{t} be the on-hand inventory at the beginning of period t and y_{t} be the amount ordered in period t. The system dynamics are then $y_{t+1}=y_{t}+x_{t}-d_{t}$. The terminal boundary condition is $V_{T+1}(x)=0$. The DP equation is then given by:

$$
V_{t}\left(x_{t}\right)=\min _{y_{t} \geq 0, y_{t} \geq x_{t}-d_{t}} \mathbf{1}\left\{y_{t}>0\right\} c_{t}+y_{t} p_{t}+h_{t}\left(x_{t}+y_{t}-d_{t}\right)+V_{t+1}\left(x_{t}+y_{t}-d_{t}\right)
$$

The optimal value is then $V_{1}\left(x_{1}\right)$ where x_{1} is our initial on-hand inventory.
Problem (11.12(a)) Notice that we can construct any tour in the neighborhood by starting at node j and examining each successive node in our initial tour ordering, adding it to either the beginning or end of our tour. We then consider a graph on $n^{2}+1$ nodes labeled (i, k) indicating that node i is at the begging of our partially constructed tour and node k is at the end with a dummy node $\left(j^{\prime}, j^{\prime}\right)$ corresponding to a completed tour. From each node (i, k) there is an arc to (w, k) and (i, w) indicating that we add node w to the beginning or end of our tour respectively with costs $c_{w, i}$ and $c_{k, w}$ respectively. The node $\left(j^{\prime}, j^{\prime}\right)$ is connected to all nodes (i, k) corresponding to hamiltonian paths with cost (i, k). So we have an acyclic graph on n^{2} nodes with $m=n^{2}+n$ edges. Solving the shortest path problem from (j, j) to $\left(j^{\prime}, j^{\prime}\right)$ gives us the shortest tour in the neighborhood of interest. Since we have an acyclic graph, we can solve the shortest path problem in $O(m)=O\left(n^{2}\right)$ time with the reaching algorithm.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

