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15.083: Integer Programming and Combinatorial Optimization

Problem Set 6 Solutions


Problem (9.2(b)) Recall that Gomory cuts are obtained from fractional rows in the final simplex tableau and 
have the form 

� 
j∈N (āij − �āij �)xj ≥ ¯ bi − � ̄  bi�. 

Problem (9.4) We will obtain the integer hull by performing successive Chvatal closures. We end up needing 
only the first Chvatal closure. We obtain the Chvatal closure by finding a TDI description for P with integral 
rhs and rounding down the lhs. The minimal faces for our inItial description of P are (0, 0, 0), (0, 0, 8/3), 
(0, 4, 0), and (8, 0, 0). We will now check that for each minimal face, we have tight constraints who’s rhs define 
an integral generating wet for their respective cones: 

1. (0, 0, 0): the tight constraints (−1, 0, 0), (0, −1, 0), (0, 0, −1) are unit vectors in their respective orthants so 
clearly define an integral basis. 

2. (0, 0, 8/3): here we need to add the generator (0, 0, 1) with the tight constraint x3 ≤ 8/3 item (0, 4, 0): 
here we need to add the generator (0, 1, 0) with the tight constraint x2 ≤ 4 

3. (8, 0, 0): the tight constraints (0, −1, 0), (0, 0, −1), (1, 2, 3) already form an integral basis. 

Rounding down the rhs of the constraint x3 ≤ 8/3 x3 ≤ 2 we obtain a polyhedron with all integral vertices, 
giving us PI . 

⇒ 

Problem (9.8) 

(a) Consider any minimal face of the stable set polyhedron and the constraints AF x = bF that are binding. The 
stable set polyhedron is known to have all vertices with entries 0, 1/2, 1 where entries of 1/2 appear only ⎛ ⎞ 

AV 0 0 · · · 
around cycles. Thus we can decompose AF into a block diagonal matrix ⎜ ⎝ 0 AC1 0 · · · ⎟ ⎠. Where 

0 0 
. . . 0 

AV is the node-edge incidence matrix of a bipartite graph (nodes with value 0 in one partite, value 1 in the 
other) plus some unit vectors and is thus unimodular; and therefore TDI in any system. The matrices ACj 

correspond to stability constraints along disjoint cycles. The only integral points in y ∈ cone((aCj )i) that 
we could not generate from integer multiples of (aCj )i are of the form yi = k for i ∈ C, k odd for some cycle 
C (since we can only generate yi = 2 by adding the tight inequalities around a cycle). Thus adding the valid 

constraints 
� 

xe ≤
|C
2 
| ∀cycles C completes the integral generating set and leaves us with a TDI system. 

e∈C � C
Rounding down the rhs of this system then gives us P1. But the inequalities xe ≤ � |

2 
| � ∀cycles C are 

valid for P1/2 so P1/2 = P1. 
e∈C 

(b) We need only show that P1/2 = conv(F). Assume P1/2 is not integral. Then there exists some c for which 
the unique maximum of cx over P1/2 contains a fractional entry xi. We have xj > 0 cj > 0 since we could ⇒
otherwise decrease xj , remain feasible and have the same objective. Since xi is fractional, we have ci > 0 
and either xi−1 + xi = 1 or xi + xi+1 = 1, otherwise we could increase xi. wlog assume xi−1 + xi = 1. 
Suppose that all variables with indices from i to ī are fractional and satisfy xi + xi−1 = 1 i = i + 1... ̄i. We 
claim that either xī + xī+1 = 1 or xi + xi−1 = 1; for if not xī+1 = xi−1 = 0, and we can shift weight between 
our fractional variables while remaining feasible and attaining an objective value no worse than x, 
contradicting the unique minimality of x. Therefore we can continue to grow our set of fractional variables 
until we show that all xi are fractional and xi + xi−1 = 1, xn + x1 = 1. Adding up these equalities we have 
2 i xi = |C| which violates the odd-cycle inequality. Thus P1/2 can have no fractional vertices. 
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Problem (11.3) Note that the optimal integer objective is 1 since n is odd. In any branch and bound node, let 
S0 be the set of indices from 1, ..., n for which the corresponding variable is set to 0, and S1 be the set of indices 
for which the corresponding variable is set to 1. This yields the following LP relaxation: 

min xn+1 : xi ∈ [0, 1] xn+1 + 2xi = n − 2|S1|
i �∈S0∪S1 

As long as |S0|, |S1| ≤ n−1 , the optimal value of this relaxation is 0. Since n − 2|S1| is odd, any optimal solution 2 
must contain at least one fractional component and we can continue branching. We will continue branching 
until we reach infeasible nodes where |S0| or |S1| are strictly greater than n−1 or when |S0| = |S1| = n−1 and2 2 
we obtain the optimal integer solution with objective 0. When we obtain the optimal solution in some node, we 
cannot prove optimality through LP bounds until we exhaust all other feasible branches (since they will have a 
lower bound of 0. Since any node with less than 2 set values is feasible, we must explore at least 2 

n−1 
nodes. n−1 2 

Problem (11.5) Let xt be the on-hand inventory at the beginning of period t and yt be the amount ordered in 
period t. The system dynamics are then yt+1 = yt + xt − dt. The terminal boundary condition is VT +1(x) = 0. 
The DP equation is then given by: 

Vt(xt) = min 1{yt > 0}ct + ytpt + ht(xt + yt − dt) + Vt+1(xt + yt − dt) 
yt≥0,yt≥xt−dt 

The optimal value is then V1(x1) where x1 is our initial on-hand inventory. 

Problem (11.12(a)) Notice that we can construct any tour in the neighborhood by starting at node j and 
examining each successive node in our initial tour ordering, adding it to either the beginning or end of our tour. 
We then consider a graph on n2 + 1 nodes labeled (i, k) indicating that node i is at the begging of our partially 
constructed tour and node k is at the end with a dummy node (j�, j�) corresponding to a completed tour. From 
each node (i, k) there is an arc to (w, k) and (i, w) indicating that we add node w to the beginning or end of our 
tour respectively with costs cw,i and ck,w respectively. The node (j�, j�) is connected to all nodes (i, k) 
corresponding to hamiltonian paths with cost (i, k). So we have an acyclic graph on n2 nodes with m = n2 + n 
edges. Solving the shortest path problem from (j, j) to (j�, j�) gives us the shortest tour in the neighborhood of 
interest. Since we have an acyclic graph, we can solve the shortest path problem in O(m) = O(n2) time with the 
reaching algorithm. 
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