Mixed-Integer Programming I

Mixed-Integer Linear Programming

$$
\begin{array}{cc}
\max & c x+h y \\
\text { s.t. } & A x+G y \leq b \\
& x \text { integral }
\end{array}
$$

where c, h, A, G, and b are rational vectors and matrices, respectively.

Projections

- Let $P \subseteq \mathbb{R}^{n+p}$, where $(x, y) \in P$ is interpreted as $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{p}$.
- The projection of P onto the x-space \mathbb{R}^{n} is

$$
\operatorname{proj}_{x}(P)=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}^{p} \text { with }(x, y) \in P\right\} .
$$

Theorem 1. Let $P=\{(x, y): A x+G y \leq b\}$. Then

$$
\operatorname{proj}_{x}(P)=\left\{x: v^{t}(b-A x) \geq 0 \text { for all } t \in T\right\} \text {, }
$$

where $\left\{v^{t}\right\}_{t \in T}$ is the set of extreme rays of $\{v: v G=0, v \geq 0\}$.

The Fundamental Theorem of MILP

Theorem 2 (Meyer 1974). Given rational matrices A and G and a rational vector b, let $P=$ $\{(x, y): A x+G y \leq b\}$ and $S=\{(x, y) \in P: x$ integral $\}$. There exist rational matrices A^{\prime}, G^{\prime}, and a rational vector b^{\prime} such that

$$
\operatorname{conv}(S)=\left\{(x, y): A^{\prime} x+G^{\prime} y \leq b^{\prime}\right\} .
$$

Proof:

- We may assume that $S \neq \emptyset$.
- By the Minkowski-Weyl Theorem, $P=\operatorname{conv}(V)+\operatorname{cone}(R)$, where $V=\left(v^{1}, \ldots, v^{p}\right)$ and $R=\left(r^{1}, \ldots, r^{q}\right)$.
- We may assume that V is a rational matrix and R is an integral matrix.
- Consider the following truncation of P :

$$
\begin{array}{r}
T=\left\{(x, y):(x, y)=\sum_{i=1}^{p} \lambda_{i} v^{i}+\sum_{j=1}^{q} \mu_{j} r^{j}, \sum_{i=1}^{p} \lambda_{i}=1,\right. \\
\lambda \geq 0,0 \leq \mu \leq 1\} .
\end{array}
$$

- T is bounded and is the projection of a rational polyhedron. It therefore is a rational polytope.
- Let $T_{I}=\{(x, y) \in T: x$ integral $\}$. Claim: $\operatorname{conv}\left(T_{I}\right)$ is a rational polytope.
- Since T is a polytope, $X=\left\{x: \exists\right.$ y s.th. $\left.(x, y) \in T_{I}\right\}$ is finite.
- For fixed $\bar{x} \in X, T_{\bar{x}}=\left\{(\bar{x}, y):(\bar{x}, y) \in T_{I}\right\}$ is a rational polytope. Hence, $T_{\bar{x}}=\operatorname{conv}\left(V_{\bar{x}}\right)$ for some rational matrix $V_{\bar{x}}$.
- Since X is finite, there is a rational matrix $V_{T_{I}}$ which contains all the columns of all matrices $V_{\bar{x}}$, for $\bar{x} \in X$.
- Therefore, $\operatorname{conv}\left(T_{I}\right)=\operatorname{conv}\left(V_{T_{I}}\right)$, which proves the claim.
- $(\bar{x}, \bar{y}) \in S$ iff \bar{x} is integral and there exist $\lambda \geq 0, \sum_{i=1}^{p} \lambda_{i}=1$, and $\mu \geq 0$ such that

$$
(\bar{x}, \bar{y})=\sum_{i=1}^{p} \lambda_{i} v^{i}+\sum_{j=1}^{q}\left(\mu_{j}-\left\lfloor\mu_{j}\right\rfloor\right) r^{j}+\sum_{j=1}^{q}\left\lfloor\mu_{j}\right\rfloor r^{j} .
$$

- The point $\sum_{i=1}^{p} \lambda_{i} v^{i}+\sum_{j=1}^{q}\left(\mu_{j}-\left\lfloor\mu_{j}\right\rfloor\right) r^{j}$ belongs to T.
- Since \bar{x} and $\left\lfloor\mu_{j}\right\rfloor r^{j}$ are integral it also belongs to T_{I}.
- Thus

$$
\begin{equation*}
S=T_{I}+R_{I}, \tag{1}
\end{equation*}
$$

where R_{I} is the set of integral conic combinations of r^{1}, \ldots, r^{q}.

- (1) implies that

$$
\operatorname{conv}(S)=\operatorname{conv}\left(T_{I}\right)+\operatorname{cone}(R)
$$

- By the above claim $\operatorname{conv}\left(T_{I}\right)$ is a rational polytope.
- Thus $\operatorname{conv}(S)$ is a rational polyhedron (having the same recession cone as P).

Union of Polyhedra

- Consider k polyhedra $P_{i}=\left\{x \in \mathbb{R}^{n}: A_{i} x \leq b^{i}\right\}, i=1, \ldots, k$.
- One can show that $\overline{\operatorname{conv}}\left(\cup_{i=1}^{k} P_{i}\right)$ is a polyhedron.
- Furthermore, we will show that this polyhedron can be obtained as the projection onto \mathbb{R}^{n} of a polyhedron with polynomially many variables and constraints in a higher-dimensional space.
- (The closure is needed: let P_{1} be a single point and let P_{2} be a line that does not contain P_{2}.)

Theorem 3. For $i=1, \ldots, k$, let $P_{i}=Q_{i}+C_{i}$ be nonempty polyhedra. Then $Q=\operatorname{conv}\left(\cup_{i=1}^{k} Q_{i}\right)$ is a polytope, $C=\operatorname{conv}\left(\cup_{i=1}^{k} C_{i}\right)$ is a finitely generated cone, and $\overline{\operatorname{conv}}\left(\cup_{i=1}^{k} P_{i}\right)=Q+C$.

- No proof here, but note that the claims on Q and C are straightforward to check.
- One consequence of the proof is that if P_{1}, \ldots, P_{k} have identical recession cones, then $\operatorname{conv}\left(\cup_{i=1}^{k} P_{i}\right)$ is a polyhedron.

Theorem 4 (Balas 1974). Consider k polyhedra $P_{i}=Q_{i}+C_{i}=\left\{x \in \mathbb{R}^{n}: A_{i} x \leq b^{i}\right\}$ and let $Y \subseteq \mathbb{R}^{n+k n+k}$ be the polyhedron defined by

$$
A_{i} x^{i} \leq b^{i} y_{i}, \sum_{i=1}^{k} x^{i}=x, \sum_{i=1}^{k} y_{i}=1, y_{i} \geq 0 \text { for } i=1, \ldots, k
$$

Then

$$
\operatorname{proj}_{x}(Y)=Q+C,
$$

where $Q=\operatorname{conv}\left(\cup_{i=1}^{k} Q_{i}\right)$ and $C=\operatorname{conv}\left(\cup_{i=1}^{k} C_{i}\right)$.
Proof:

- First, let $x \in Q+C$.
- There exist $w^{i} \in Q_{i}$ and $z^{i} \in C_{i}$ such that $x=\sum_{i} y_{i} w^{i}+\sum_{i} z^{i}$, where $y_{i} \geq 0$ and $\sum_{i} y_{i}=1$.
- Let $x^{i}=y_{i} w^{i}+z^{i}$. Then $A_{i} x^{i} \leq b^{i} y_{i}$ and $x=\sum_{i} x^{i}$.
- This shows $x \in \operatorname{proj}_{x}(Y)$.
- Now, let $x \in \operatorname{proj}_{x}(Y)$.
- There exist x^{1}, \ldots, x^{k}, y such that $x=\sum_{i} x^{i}$ where $A_{i} x^{i} \leq b^{i} y_{i}, \sum_{i} y_{i}=1, y \geq 0$.
- Let $I=\left\{i: y_{i}>0\right\}$.
- For $i \in I$, let $z^{i}=\frac{x^{i}}{y_{i}}$. Then $z^{i} \in P_{i}$.
- Since $P_{i}=Q_{i}+C_{i}$, we can write $z^{i}=w^{i}+\frac{r^{i}}{y_{i}}$ where $w^{i} \in Q_{i}$ and $r^{i} \in C_{i}$.
- For $i \notin I$, we have $A_{i} x^{i} \leq 0$, that is $x^{i} \in C_{i}$. Let $r^{i}=x^{i}$ for $i \notin I$.
- Then,

$$
x=\sum_{i \in I} y_{i} z^{i}+\sum_{i \notin I} x^{i}=\sum_{i \in I} y_{i} w^{i}+\sum_{i} r^{i} \in Q+C .
$$

Lift-and-Project Revisited

We consider mixed-0/1 linear programs:

$$
\begin{array}{clr}
\min & c x & \\
\text { s.t. } & A x \geq b & \\
& x_{j} \in\{0,1\} & \text { for } j=1, \ldots, n \\
& x_{j} \geq 0 & \text { for } j=n+1, \ldots, n+p
\end{array}
$$

We let $P=\left\{x \in \mathbb{R}_{+}^{n+p}: A x \geq b\right\}$ and $S=\left\{x \in\{0,1\}^{n} \times \mathbb{R}_{+}^{p}: A x \geq b\right\}$.
We assume that $A x \geq b$ includes $-x_{j} \geq-1$ for $j=1, \ldots, n$, but not $x \geq 0$.

- Given an index $j \in\{1, \ldots, n\}$, let

$$
P_{j}=\operatorname{conv}\left\{\left(A x \geq b, x \geq 0, x_{j}=0\right) \cup\left(A x \geq b, x \geq 0, x_{j}=1\right)\right\} .
$$

- By definition, this is the tightest possible relaxation among all relaxations that ignore the integrality of all variables $x_{i}, i \neq j$.
- $\bigcap_{j=1}^{n} P_{j}$ is called the lift-and-project closure:

$$
\operatorname{conv}(S) \subseteq \bigcap_{j=1}^{n} P_{j} \subseteq P
$$

- On 35 mixed-0/1 linear programs from MIPLIB, the lift-and-project closure reduces the integrality gap by 37% on average [Bonami \& Minoux 2005].

Lift-and-Project Cuts

P_{j} is the convex hull of the union of two polyhedra:

$$
\begin{aligned}
& A x \geq b \quad A x \geq b \\
& x \geq 0 \quad \text { and } \quad x \geq 0 \\
& -x_{j} \geq 0 \quad x_{j} \geq 1
\end{aligned}
$$

By the above theorem:

$$
P_{j}=\operatorname{proj}_{x}\left(\begin{array}{rll}
A x^{0} & \geq b y_{0} \\
-x_{j}^{0} & \geq & 0 \\
A x^{1} & \geq b y_{1} \\
x_{j}^{1} & \geq y_{1} \\
x^{0}+x^{1} & =x \\
y_{0}+y_{1} & =1 \\
x^{0}, x^{1}, y_{0}, y_{1} & \geq 0
\end{array}\right)
$$

- Using the projection theorem, we get that P_{j} is defined by the inequalities $\alpha x \geq \beta$ such that

$$
\begin{array}{rrrrrr}
\alpha & -u A & +u_{0} e_{j} & & & \geq 0 \tag{2}\\
\alpha & & & -v A & -v_{0} e_{j} & \geq 0 \\
\beta & & \leq u b & & & \\
\beta & & & -v b & -v_{0} & \leq 0 \\
& u, & u_{0}, & v, & v_{0} & \geq 0
\end{array}
$$

- Such an inequality $\alpha x \geq \beta$ is called a lift-and-project inequality.
- Given a fractional point \bar{x}, we can determine if there exists a lift-and-project inequality $\alpha x \geq \beta$ valid for P_{j} that cuts off \bar{x}.
- This problem amounts to finding $\left(\alpha, \beta, u, u_{0}, v, v_{o}\right)$ satisfying (2) such that $\alpha \bar{x}-\beta<0$.
- In order to find a "best" cut in cone (2), we solve the cut-generating LP:

$$
\begin{aligned}
& \min \alpha \bar{x}-\beta
\end{aligned}
$$

Mixed Integer Inequalities

- Consider $S=\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{p}: \sum_{j=1}^{n} a_{j} x_{j}+\sum_{j=1}^{p} g_{j} y_{j}=b\right\}$.
- Let $b=\lfloor b\rfloor+f_{0}$ where $0<f_{0}<1$.
- Let $a_{j}=\left\lfloor a_{j}\right\rfloor+f_{j}$ where $0 \leq f_{j}<1$.
- Then $\sum_{f_{j} \leq f_{0}} f_{j} x_{j}+\sum_{f_{j}>f_{0}}\left(f_{j}-1\right) x_{j}+\sum_{j=1}^{p} g_{j} y_{j}=k+f_{0}$, where k is some integer.
- Since $k \leq-1$ or $k \geq 0$, any $x \in S$ satisfies

$$
\begin{equation*}
\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}-\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{f_{0}} x_{j}+\sum_{j=1}^{p} \frac{g_{j}}{f_{0}} y_{j} \geq 1 \tag{3}
\end{equation*}
$$

OR

$$
\begin{equation*}
-\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{1-f_{0}} x_{j}+\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{1-f_{0}} x_{j}-\sum_{j=1}^{p} \frac{g_{j}}{1-f_{0}} y_{j} \geq 1 \tag{4}
\end{equation*}
$$

- This is of the form $\sum_{j} a_{j}^{1} x_{j} \geq 1$ or $\sum_{j} a_{j}^{2} x_{j} \geq 1$, which implies $\sum_{j} \max \left\{a_{j}^{1}, a_{j}^{2}\right\} x_{j} \geq 1$ for any $x \geq 0$.
- For each variable, what is the max coefficient in (3) and (4)?
- We get

$$
\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}+\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{1-f_{0}} x_{j}+\sum_{g_{j}>0} \frac{g_{j}}{f_{0}} y_{j}-\sum_{g_{j}<0} \frac{g_{j}}{1-f_{0}} y_{j} \geq 1 .
$$

- This is the Gomory mixed integer (GMI) inequality.
- In the pure integer programming case, the GMI inequality reduces to

$$
\sum_{f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}+\sum_{f_{j}>f_{0}} \frac{1-f_{j}}{1-f_{0}} x_{j} \geq 1
$$

- Since $\frac{1-f_{j}}{1-f_{0}}<\frac{f_{j}}{f_{0}}$ when $f_{j}>f_{0}$, the GMI inequality dominates

$$
\sum_{j=1}^{n} f_{j} x_{j} \geq f_{0}
$$

which is known as the fractional cut.

- Consider now $S=\left\{(x, y) \in \mathbb{Z}_{+}^{n} \times \mathbb{R}_{+}^{p}: A x+G y \leq b\right\}$.
- Let $P=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{p}: A x+G y \leq b\right\}$ be the underlying polyhedron.
- Let $\alpha x+\gamma y \leq \beta$ be any valid for P.
- Add a nonnegative slack variable s, use $\alpha x+\gamma y+s=\beta$ to derive a GMI inequality, and eliminate $s=\beta-\alpha x-\gamma y$ from it.
- The result is a valid inequality for S.
- These inequalities are called the GMI inequalities for S.
- In contrast to lift-and-project cuts, it is in general NP-hard to find a GMI inequality that cuts off a point $(\bar{x}, \bar{y}) \in P \backslash S$, or show that none exists.
- However, one can easily find a GMI inequality that cuts off a basic feasible solution.
- On 41 MIPLIB instances, adding the GMI cuts generated from the optimal simplex tableaux reduces the integrality gap by 24% on average [Bonami et al. 2008]
- GMI cuts are widely used in commercial codes today.
- Numerical issues need to be addressed, however.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

