15.083J/6.859J Integer Optimization

Lecture 3: Methods to enhance formulations

1 Outline

- Polyhedral review
- Methods to generate valid inequalities
- Methods to generate facet defining inequalities

2 Polyhedral review

2.1 Dimension of polyhedra

- Definition: The vectors $\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{k} \in \Re^{n}$ are affinely independent if the unique solution of the linear system

$$
\sum_{i=1}^{k} a_{i} \boldsymbol{x}^{i}=\mathbf{0}, \quad \sum_{i=1}^{k} a_{i}=0
$$

is $a_{i}=0$ for all $i=1, \ldots, k$.

- Proposition: The vectors $\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{k} \in \Re^{n}$ are affinely independent if and only if the vectors $\boldsymbol{x}^{2}-\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{k}-\boldsymbol{x}^{1}$ are linearly independent.
- Definition: Let $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$. Then, the polyhedron P has dimension k, denoted $\operatorname{dim}(P)=k$, if the maximum number of affinely independent points in P is $k+1$.
- $P=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}-x_{2}=0,0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1\right\}, \operatorname{dim}(P)=$?

2.2 Valid Inequalities

2.2.1 Definitions

- $\boldsymbol{a}^{\prime} \boldsymbol{x} \geq b$ is called a valid inequality for a set P if it is satisfied by all points in P.
- Let $\boldsymbol{f}^{\prime} \boldsymbol{x} \geq g$ be a valid inequality for a polyhedron P, and let $F=\{x \in$ $\left.P \mid \boldsymbol{f}^{\prime} \boldsymbol{x}=g\right\}$. Then, F is called a face of P and we say that $\boldsymbol{f}^{\prime} \boldsymbol{x} \geq g$ represents F. A face is called proper if $F \neq \emptyset, P$.
- A face F of P represented by the inequality $\boldsymbol{f}^{\prime} \boldsymbol{x} \geq g$, is called a facet of P if $\operatorname{dim}(F)=\operatorname{dim}(P)-1$. We say that the inequality $\boldsymbol{f}^{\prime} \boldsymbol{x} \geq g$ is facet defining.

2.2.2 Theorem

- For each facet F of P, at least one of the inequalities representing F is necessary in any description of P.
- Every inequality representing a face of P of dimension less than $\operatorname{dim}(P)-1$ is not necessary in the description of P, and can be dropped.

2.2.3 Example

- $S=\left\{\left(x_{1}, x_{2}\right) \in \mathcal{Z}^{2} \mid x_{1} \leq 3, x_{1} \geq 1,-x_{1}+2 x_{2} \leq 4,2 x_{1}+x_{2} \leq 8, x_{1}+2 x_{2} \geq 3\right\}$.
- Facets for $\operatorname{conv}(S): x_{1} \leq 3, x_{1} \geq 1, x_{1}+2 x_{2} \geq 3, x_{1}+x_{2} \leq 5,-x_{1}+x_{2} \leq-1$.
- Faces of dimension one: $-x_{1}+2 x_{2} \leq 4$, and $2 x_{1}+x_{2} \leq 8$.

3 Methods to generate valid inequalities

3.1 Rounding

- Choose $\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right)^{\prime} \geq \mathbf{0}$; Multiply i th constraint with u_{i} and sum:

$$
\sum_{j=1}^{n}\left(\boldsymbol{u}^{\prime} \boldsymbol{A}_{j}\right) x_{j} \leq \boldsymbol{u}^{\prime} \boldsymbol{b}
$$

- Since $\left\lfloor\boldsymbol{u}^{\prime} \boldsymbol{A}_{j}\right\rfloor \leq \boldsymbol{u}^{\prime} \boldsymbol{A}_{j}$ and $x_{j} \geq 0$:

$$
\sum_{j=1}^{n}\left(\left\lfloor\boldsymbol{u}^{\prime} \boldsymbol{A}_{j}\right\rfloor\right) x_{j} \leq \boldsymbol{u}^{\prime} \boldsymbol{b}
$$

- As $\boldsymbol{x} \in \mathcal{Z}_{+}^{n}: \sum_{j=1}^{n}\left(\left\lfloor\boldsymbol{u}^{\prime} \boldsymbol{A}_{j}\right\rfloor\right) x_{j} \leq\left\lfloor\boldsymbol{u}^{\prime} \boldsymbol{b}\right\rfloor$.

3.1.1 Matching

- $S=\left\{x \in\{0,1\}^{|E|} \mid \sum_{e \in \delta(\{i\})} x_{e} \leq 1, i \in V\right\}$.
- $U \subset V,|U|=2 k+1$. For each $i \in U$, multiply $\sum_{e \in \delta(\{i\})} x_{e} \leq 1$ by $1 / 2$, and add:

$$
\sum_{e \in E(U)} x_{e}+\frac{1}{2} \sum_{e \in \delta(U)} x_{e} \leq \frac{1}{2}|U|
$$

- Since $x_{e} \geq 0, \sum_{e \in E(U)} x_{e} \leq \frac{1}{2}|U|$.
- Round to $(|U|$ is odd $)$

$$
\sum_{e \in E(U)} x_{e} \leq\left\lfloor\frac{1}{2}|U|\right\rfloor=\frac{|U|-1}{2}
$$

3.2 Superadditivity

3.2.1 Definition

A function $F: D \subset \Re^{n} \mapsto \Re$ is superadditive if for $\boldsymbol{a}_{1}, \boldsymbol{a}_{2} \in D,: \boldsymbol{a}_{1}+\boldsymbol{a}_{2} \in D$:

$$
F\left(\boldsymbol{a}_{1}\right)+F\left(\boldsymbol{a}_{2}\right) \leq F\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right),
$$

It is nondecreasing if

$$
F\left(\boldsymbol{a}_{1}\right) \leq F\left(\boldsymbol{a}_{2}\right), \text { if } \boldsymbol{a}_{1} \leq \boldsymbol{a}_{2} \text { for all } \boldsymbol{a}_{1}, \boldsymbol{a}_{2} \in D
$$

3.2.2 Theorem

Slide 10
If $F: \Re^{m} \mapsto \Re$ is superadditive and nondecreasing with $F(\mathbf{0})=0, \sum_{j=1}^{n} F\left(\boldsymbol{A}_{j}\right) x_{j} \leq$ $F(\boldsymbol{b})$ is valid for the set $S=\left\{\boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$.

3.2.3 Proof

By induction on x_{j}, we show: $F\left(\boldsymbol{A}_{j}\right) x_{j} \leq F\left(\boldsymbol{A}_{j} x_{j}\right)$. For $x_{j}=0$ it is clearly true. Assuming it is true for $x_{j}=k-1$, then

$$
\begin{aligned}
F\left(\boldsymbol{A}_{j}\right) k & =F\left(\boldsymbol{A}_{j}\right)+F\left(\boldsymbol{A}_{j}\right)(k-1) \\
& \leq F\left(\boldsymbol{A}_{j}\right)+F\left(\boldsymbol{A}_{j}(k-1)\right) \\
& \leq F\left(\boldsymbol{A}_{j}+\boldsymbol{A}_{j}(k-1)\right)
\end{aligned}
$$

by superadditivity, and the induction is complete. Therefore,

$$
\sum_{j=1}^{n} F\left(\boldsymbol{A}_{j}\right) x_{j} \leq \sum_{j=1}^{n} F\left(\boldsymbol{A}_{j} x_{j}\right)
$$

By superadditivity,

$$
\sum_{j=1}^{n} F\left(\boldsymbol{A}_{j} x_{j}\right) \leq F\left(\sum_{j=1}^{n} \boldsymbol{A}_{j} x_{j}\right)=F(\boldsymbol{A} \boldsymbol{x}) .
$$

Since $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ and F is nondecreasing

$$
F(\boldsymbol{A} \boldsymbol{x}) \leq F(\boldsymbol{b})
$$

3.3 Modular arithmetic

$$
S=\left\{\boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \sum_{j=1}^{n} a_{j} x_{j}=a_{0}\right\},
$$

$d \in \mathcal{Z}_{+}$. We write $a_{j}=b_{j}+u_{j} d$, where $b_{j}\left(0 \leq b_{j}<d, b_{j} \in \mathcal{Z}_{+}\right)$. Then,

$$
\sum_{j=1}^{n} b_{j} x_{j}=b_{0}+r d, \text { for some integer } r
$$

Since $\sum_{j=1}^{n} b_{j} x_{j} \geq 0$ and $b_{0}<d$, we obtain $r \geq 0$. Then, $\sum_{j=1}^{n} b_{j} x_{j} \geq b_{0}$ is valid for S.

3.3.1 Examples

- $S=\left\{\boldsymbol{x} \in \mathcal{Z}_{+}^{4} \mid 27 x_{1}+17 x_{2}-64 x_{3}+x_{4}=203\right\}$. For $d=13$, inequality $x_{1}+4 x_{2}+x_{3}+x_{4} \geq 8$ is valid for S.
- For $d=1$, and a_{j} are not integers. In this case, since $\boldsymbol{x} \geq \mathbf{0}$, we obtain $\sum_{j=1}^{n}\left\lfloor a_{j}\right\rfloor x_{j} \leq a_{0}$. Since $\boldsymbol{x} \in \mathcal{Z}, \sum_{j=1}^{n}\left\lfloor a_{j}\right\rfloor x_{j} \leq\left\lfloor a_{0}\right\rfloor$, and thus the following inequality is valid for S

$$
\sum_{j=1}^{n}\left(a_{j}-\left\lfloor a_{j}\right\rfloor\right) x_{j} \geq a_{0}-\left\lfloor a_{0}\right\rfloor .
$$

3.4 Disjunctions

3.4.1 Proposition

If the inequality $\sum_{j=1}^{n} a_{j} x_{j} \leq b$ is valid for $S_{1} \subset \Re_{+}^{n}$, and the inequality $\sum_{j=1}^{n} c_{j} x_{j} \leq d$ is valid for $S_{2} \subset \Re_{+}^{n}$, then the inequality

$$
\sum_{j=1}^{n} \min \left(a_{j}, c_{j}\right) x_{j} \leq \max (b, d)
$$

is valid for $S_{1} \cup S_{2}$.

3.4.2 Theorem

If the inequality $\sum_{j=1}^{n} a_{j} x_{j}-d\left(x_{k}-\alpha\right) \leq b$ is valid for S for some $d \geq 0$, and the inequality $\sum_{j=1}^{n} a_{j} x_{j}+c\left(x_{k}-\alpha-1\right) \leq b$ is valid for S for some $c \geq 0$, then the inequality $\sum_{j=1}^{n} a_{j} x_{j} \leq b$ is valid for S.
Example: In previous example, we write $-x_{1}+2 x_{2} \leq 4$ and $-x_{1} \leq-1$ as follows:

$$
\left(-x_{1}+x_{2}\right)+\left(x_{2}-3\right) \leq 1, \quad\left(-x_{1}+x_{2}\right)-\left(x_{2}-2\right) \leq 1 .
$$

$\alpha=2,-x_{1}+x_{2} \leq 1$ is valid.

3.5 Mixed integer rounding

3.5.1 Proposition

- For $v \in \Re, f(v)=v-\lfloor v\rfloor, v^{+}=\max \{0, v\}$.
- $X=\left\{(x, y) \in \mathcal{Z} \times \Re_{+} \mid x-y \leq b\right\}$

- The inequality $x-\frac{1}{1-f(b)} y \leq\lfloor b\rfloor$ is valid for $\operatorname{conv}(X)$.

3.5.2 Proof

- $P^{1}=X \cap\{(x, y) \mid x \leq\lfloor b\rfloor\}$,
- $P^{2}=X \cap\{(x, y) \mid x \geq\lfloor b\rfloor+1\}$.
- Add $1-f(b)$ times the inequality $x-\lfloor b\rfloor \leq 0$ and $0 \leq y:(x-\lfloor b\rfloor)(1-f(b)) \leq y$ is valid for P^{1}.
- For P^{2} we combine $-(x-\lfloor b\rfloor) \leq-1$ and $x-y \leq b$ with multipliers $f(b)$ and 1: $(x-\lfloor b\rfloor)(1-f(b)) \leq y$. By disjunction, $(x-\lfloor b\rfloor)(1-f(b)) \leq y$ is valid for $\operatorname{conv}\left(P^{1} \cup P^{2}\right)=\operatorname{conv}(X)$.

3.5.3 Theorem

$S=\left\{\boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \sum_{j=1}^{n} \boldsymbol{A}_{j} x_{j} \leq \boldsymbol{b}, \quad j=1, \ldots, n\right\}$. For every $\boldsymbol{u} \in \mathcal{Q}_{+}^{m}$ the inequality $\sum_{j=1}^{n}\left(\left\lfloor\boldsymbol{u}^{\prime} \boldsymbol{A}_{j}\right\rfloor+\frac{\left[f\left(\boldsymbol{u}^{\prime} \boldsymbol{A}_{j}\right)-f\left(\boldsymbol{u}^{\prime} \boldsymbol{b}\right)\right]^{+}}{1-f\left(\boldsymbol{u}^{\prime} \boldsymbol{b}\right)}\right) x_{j} \leq\left\lfloor\boldsymbol{u}^{\prime} \boldsymbol{b}\right\rfloor$ is valid for conv (S).

4 Facets

4.1 By the definition

4.1.1 Stable set

$$
\begin{array}{lll}
\max & \sum_{i \in V} w_{i} x_{i} & \\
\text { s. t. } & x_{i}+x_{j} \leq 1, & \forall\{i, j\} \in E, \\
& x_{i} \in\{0,1\}, & i \in V .
\end{array}
$$

A collection of nodes U, such that for all $i, j \in U,\{i, j\} \in E$ is called a clique.

$$
\sum_{i \in U} x_{i} \leq 1, \quad \text { for any clique } U(*)
$$

is valid.

- A clique U is maximal if for all $i \in V \backslash U, U \cup\{i\}$ is not a clique.
- (*) is facet defining if and only if U is a maximal clique.
- $U=\{1, \ldots, k\}$. Then, $\boldsymbol{e}_{i}, i=1, \ldots, k$ satisfy $\left({ }^{*}\right)$ with equality.
- For each $i \notin U$, there is a node $j=r(i) \in U$, such that $(i, r(i)) \notin E$. \boldsymbol{x}^{i} with $x_{i}^{i}=1, x_{r(i)}^{i}=1$, and zero elsewhere is in S, and satisfies inequality $\left({ }^{*}\right)$ with equality.
- $e_{1}, \ldots, e_{k}, x^{k+1}, \ldots, x^{n}$ are linearly independent; hence, affinely independent.

Conversely, since U is not maximal, there is a node $i \notin U$ such that $U \cup\{i\}$ is a clique, and thus $\sum_{j \in U \cup\{i\}} x_{j} \leq 1(* *)$ is valid for $\operatorname{conv}(S)$. Since inequality $\left({ }^{*}\right)$ is the sum of $-x_{i} \leq 0$ and inequality $\left({ }^{(*)}\right.$, then $\left(^{*}\right)$ is not facet defining.

4.2 Lifting

$$
\max \sum_{i=1}^{6} x_{i}
$$

$$
\begin{array}{rlr}
x_{1}+x_{2}+x_{3} & \leq 1 \\
x_{1}+x_{3}+x_{4} & \leq 1 \\
x_{1}+ & \leq 1 \\
x_{1}+ & x_{4}+x_{5} & \leq 1 \\
x_{1}+x_{2} & x_{5}+x_{6} & \leq 1 \\
& +x_{6} & \leq 1 .
\end{array}
$$

unique optimal solution $\boldsymbol{x}^{0}=(1 / 2)(0,1,1,1,1,1)^{\prime}$. Do maximal clique inequalities describe convex hull?

- x^{0} does not satisfy

$$
x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 2
$$

- Stable sets $\{2,4\},\{2,5\},\{3,5\},\{3,6\},\{4,6\}$ satisfy it with equality. Not facet, since there are no other stable sets that satisfy (1) with equality.
- (1) is facet defining for $S \cap\left\{\boldsymbol{x} \in\{0,1\}^{6} \mid x_{1}=0\right\}$.
- Consider $a x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 2, a>0$.
- Select a in order for (1) to be still valid, and to define a facet for S.
- For $x_{1}=0,(1)$ is valid for all a.
- If $x_{1}=1, a \leq 2-x_{2}-x_{3}-x_{4}-x_{5}-x_{6}$. Since $x_{1}=1$ implies $x_{2}=\cdots=x_{6}=0$, then $a \leq 2$. Therefore, if $0 \leq a \leq 2$, (1) is valid.
- For $a=2,\{2,4\},\{2,5\},\{3,5\},\{3,6\},\{4,6\}$, and $\{1\}$ satisfy it with equality.
- $2 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 2$, is valid and defines a facet $\operatorname{conv}(S)$.

4.2.1 General principle

Suppose $S \subset\{0,1\}^{n}, S^{i}=S \cap\left\{\boldsymbol{x} \in\{0,1\}^{n} \mid x_{1}=i\right\}, i=0,1$, and $\sum_{j=2}^{n} a_{j} x_{j} \leq a_{0}$ (2) is valid for S^{0}.

- If $S^{1}=\emptyset$, then $x_{1} \leq 0$ is valid for S.
- If $S^{1} \neq \emptyset$, then $a_{1} x_{1}+\sum_{j=2}^{n} a_{j} x_{j} \leq a_{0}(3)$ is valid for S for any $a_{1} \leq a_{0}-Z$, $Z=\sum_{j=2}^{n} a_{j} x_{j}$ s.t. $\boldsymbol{x} \in S^{1}$.
- If $a_{1}=a_{0}-Z$ and (2) defines a face of dimension k of $\operatorname{conv}\left(S^{0}\right)$, then (3) gives a face of dimension $k+1$ of $\operatorname{conv}(S)$.

4.2.2 Geometry

4.2.3 Order of lifting

- $P=\operatorname{conv}\left\{\boldsymbol{x} \in\{0,1\}^{6} \mid 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+3 x_{5}+8 x_{6} \leq 17\right\}$.
- $x_{1}+x_{2}+x_{3}+x_{4} \leq 3$ is valid for $P \cap\left\{x_{5}=x_{6}=0\right\}$.
- Lifting on x_{5} and then on x_{6}, yields $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3$.
- Lifting on x_{6} and then on x_{5}, yields $x_{1}+x_{2}+x_{3}+x_{4}+2 x_{6} \leq 3$.
15.083J/6.859J Integer Optimization

Lecture 13: Lattices I

1 Outline

- Integer points in lattices.
- Is $\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$ nonempty?

2 Integer points in lattices

- $\boldsymbol{B}=\left[\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}\right] \in \mathcal{R}^{n \times d}, \boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}$ are linearly independent.

$$
\mathcal{L}=\mathcal{L}(\boldsymbol{B})=\left\{\boldsymbol{y} \in \mathcal{R}^{n} \mid \boldsymbol{y}=\boldsymbol{B} \boldsymbol{v}, \quad \boldsymbol{v} \in \mathcal{Z}^{d}\right\}
$$

is called the lattice generated by $\boldsymbol{B} . \boldsymbol{B}$ is called a basis of $\mathcal{L}(\boldsymbol{B})$.

- $\boldsymbol{b}^{i}=\boldsymbol{e}_{i}, i=1, \ldots, n \boldsymbol{e}_{i}$ is the i-th unit vector, then $\mathcal{L}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=\mathcal{Z}^{n}$.
- $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B})$ and $\lambda, \mu \in \mathcal{Z}, \lambda \boldsymbol{x}+\mu \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B})$.

2.1 Multiple bases

$\boldsymbol{b}^{1}=(1,2)^{\prime}, \boldsymbol{b}^{2}=(2,1)^{\prime}, \boldsymbol{b}^{3}=(1,-1)^{\prime}$. Then, $\mathcal{L}\left(\boldsymbol{b}^{1}, \boldsymbol{b}^{2}\right)=\mathcal{L}\left(\boldsymbol{b}^{2}, \boldsymbol{b}^{3}\right)$.

2.2 Alternative bases

Let $\boldsymbol{B}=\left[\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}\right]$ be a basis of the lattice \mathcal{L}.

- If $\boldsymbol{U} \in \mathcal{R}^{d \times d}$ is unimodular, then $\overline{\boldsymbol{B}}=\boldsymbol{B} \boldsymbol{U}$ is a basis of the lattice \mathcal{L}.
- If \boldsymbol{B} and $\overline{\boldsymbol{B}}$ are bases of \mathcal{L}, then there exists a unimodular matrix \boldsymbol{U} such that $\bar{B}=B U$.
- If \boldsymbol{B} and $\overline{\boldsymbol{B}}$ are bases of \mathcal{L}, then $|\operatorname{det}(\boldsymbol{B})|=|\operatorname{det}(\overline{\boldsymbol{B}})|$.

2.3 Proof

- For all $\boldsymbol{x} \in \mathcal{L}: \boldsymbol{x}=\boldsymbol{B} \boldsymbol{v}$ with $\boldsymbol{v} \in \mathcal{Z}^{d}$.
- $\operatorname{det}(\boldsymbol{U})= \pm 1$, and $\operatorname{det}\left(\boldsymbol{U}^{-1}\right)=1 / \operatorname{det}(\boldsymbol{U})= \pm 1$.
- $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{U} \boldsymbol{U}^{-1} \boldsymbol{v}$.
- From Cramer's rule, \boldsymbol{U}^{-1} has integral coordinates, and thus $\boldsymbol{w}=\boldsymbol{U}^{-1} \boldsymbol{v}$ is integral.
- $\overline{\boldsymbol{B}}=\boldsymbol{B} \boldsymbol{U}$. Then, $\boldsymbol{x}=\overline{\boldsymbol{B}} \boldsymbol{w}$, with $\boldsymbol{w} \in \mathcal{Z}^{d}$, which implies that $\overline{\boldsymbol{B}}$ is a basis of \mathcal{L}.
- $\boldsymbol{B}=\left[\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}\right]$ and $\overline{\boldsymbol{B}}=\left[\overline{\boldsymbol{b}}^{1}, \ldots, \overline{\boldsymbol{b}}^{d}\right]$ be bases of \mathcal{L}. Then, the vectors $\boldsymbol{b}^{1}, \ldots, \boldsymbol{b}^{d}$ and the vectors $\overline{\boldsymbol{b}}^{1}, \ldots, \overline{\boldsymbol{b}}^{d}$ are both linearly independent.
- $V=\left\{\boldsymbol{B} \boldsymbol{y} \mid \boldsymbol{y} \in \mathcal{R}^{n}\right\}=\left\{\overline{\boldsymbol{B}} \boldsymbol{y} \mid \boldsymbol{y} \in \mathcal{R}^{n}\right\}$.
- There exists an invertible $d \times d$ matrix \boldsymbol{U} such that

$$
\boldsymbol{B}=\overline{\boldsymbol{B}} \boldsymbol{U} \text { and } \overline{\boldsymbol{B}}=\boldsymbol{B} \boldsymbol{U}^{-1} .
$$

- $\boldsymbol{b}^{i}=\overline{\boldsymbol{B}} \boldsymbol{U}_{i}, \boldsymbol{U}_{i} \in \mathcal{Z}^{d}$ and $\overline{\boldsymbol{b}}^{i}=\boldsymbol{B} \boldsymbol{U}_{i}^{-1}, \boldsymbol{U}_{i}^{-1} \in \mathcal{Z}^{d}$.
- \boldsymbol{U} and \boldsymbol{U}^{-1} are both integral, and thus both $\operatorname{det}(\boldsymbol{U})$ and $\operatorname{det}\left(\boldsymbol{U}^{-1}\right)$ are integral, leading to $\operatorname{det}(\boldsymbol{U})= \pm 1$.
- $|\operatorname{det}(\overline{\boldsymbol{B}})|=|\operatorname{det}(\boldsymbol{B})||\operatorname{det}(\boldsymbol{U})|=|\operatorname{det}(\boldsymbol{B})|$.

2.4 Convex Body Theorem

Let \mathcal{L} be a lattice in \mathcal{R}^{n} and let $A \in \mathcal{R}^{n}$ be a convex set such that $\operatorname{vol}(A)>$ $2^{n} \operatorname{det}(\mathcal{L})$ and A is symmetric around the origin, i.e., $\boldsymbol{z} \in A$ if and only if $-\boldsymbol{z} \in A$. Then A contains a non-zero lattice point.

2.5 Integer normal form

- $\boldsymbol{A} \in \mathcal{Z}^{m \times n}$ of full row rank is in integer normal form, if it is of the form $[\boldsymbol{B}, \mathbf{0}]$, where $\boldsymbol{B} \in \mathcal{Z}^{m \times m}$ is invertible, has integral elements and is lower triangular.
- Elementary operations:
(a) Exchanging two columns;
(b) Multiplying a column by -1 .
(c) Adding an integral multiple of one column to another.
- Theorem: (a) A full row rank $\boldsymbol{A} \in \mathcal{Z}^{m \times n}$ can be brought into the integer normal form $[\boldsymbol{B}, \mathbf{0}]$ using elementary column operations;
(b) There is a unimodular matrix \boldsymbol{U} such that $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$.

2.6 Proof

- We show by induction that by applying elementary column operations (a)-(c), we can transform \boldsymbol{A} to

$$
\left[\begin{array}{ll}
\alpha & 0 \tag{1}\\
\boldsymbol{v} & \boldsymbol{C}
\end{array}\right]
$$

where $\alpha \in \mathcal{Z}_{+} \backslash\{0\}, \boldsymbol{v} \in \mathcal{Z}^{m-1}$ and $\boldsymbol{C} \in \mathcal{Z}^{(m-1) \times(n-1)}$ is of full row rank. By proceeding inductively on the matrix \boldsymbol{C} we prove part (a).

- By iteratively exchanging two columns of \boldsymbol{A} (Operation (a)) and possibly multiplying columns by -1 (Operation (b)), we can transform \boldsymbol{A} (and renumber the column indices) such that

$$
a_{1,1} \geq a_{1,2} \geq \ldots \geq a_{1, n} \geq 0
$$

- Since \boldsymbol{A} is of full row rank, $a_{1,1}>0$. Let $k=\max \left\{i: a_{1, i}>0\right\}$. If $k=1$, then we have transformed \boldsymbol{A} into a matrix of the form (1). Otherwise, $k \geq 2$ and by applying $k-1$ operations (c) we transform \boldsymbol{A} to

$$
\overline{\boldsymbol{A}}=\left[\boldsymbol{A}_{1}-\left\lfloor\frac{a_{1,1}}{a_{1,2}}\right\rfloor \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{k-1}-\left\lfloor\frac{a_{1, k-1}}{a_{1, k}}\right\rfloor \boldsymbol{A}_{k}, \boldsymbol{A}_{k}, \boldsymbol{A}_{k+1}, \ldots, \boldsymbol{A}_{n}\right] .
$$

- Repeat the process to $\overline{\boldsymbol{A}}$, and exchange two columns of $\overline{\boldsymbol{A}}$ such that

$$
\bar{a}_{1,1} \geq \bar{a}_{1,2} \geq \ldots \geq \bar{a}_{1, n} \geq 0 .
$$

- $\max \left\{i: \bar{a}_{1, i}>0\right\} \leq k$

$$
\sum_{i=1}^{k} \bar{a}_{1, i} \leq \sum_{i=1}^{k-1}\left(a_{1, i}-a_{1, i+1}\right)+a_{1, k}=a_{1,1}<\sum_{i=1}^{k} a_{1, i}
$$

which implies that after a finite number of iterations \boldsymbol{A} is transformed by elementary column operations (a)-(c) into a matrix of the form (1).

- Each of the elementary column operations corresponds to multiplying matrix \boldsymbol{A} by a unimodular matrix as follows:
(i) Exchanging columns k and j of matrix \boldsymbol{A} corresponds to multiplying matrix \boldsymbol{A} by a unimodular matrix $\boldsymbol{U}_{1}=\boldsymbol{I}+\boldsymbol{I}_{k, j}+\boldsymbol{I}_{j, k}-\boldsymbol{I}_{k, k}-\boldsymbol{I}_{j, j} . \operatorname{det}\left(\boldsymbol{U}_{1}\right)=$ -1 .
(ii) Multiplying column j by -1 corresponds to multiplying matrix \boldsymbol{A} by a unimodular matrix $\boldsymbol{U}_{2}=\boldsymbol{I}-2 \boldsymbol{I}_{j, j}$, that is an identity matrix except that element (j, j) is -1 . $\operatorname{det}\left(\boldsymbol{U}_{2}\right)=-1$.
(iii) Adding $f \in \mathcal{Z}$ times column k to column j, corresponds to multiplying matrix \boldsymbol{A} by a unimodular matrix $\boldsymbol{U}_{3}=\boldsymbol{I}+f \boldsymbol{I}_{k, j}$. Since $\operatorname{det}\left(\boldsymbol{U}_{3}\right)=1, \boldsymbol{U}_{3}$ is unimodular.
- Performing two elementary column operations corresponds to multiplying the corresponding unimodular matrices resulting in another unimodular matrix.

2.7 Example

$$
\left[\begin{array}{rrr}
3 & -4 & 2 \\
1 & 0 & 7
\end{array}\right] \longrightarrow\left[\begin{array}{lll}
4 & 3 & 2 \\
0 & 1 & 7
\end{array}\right]
$$

.

$$
\left[\begin{array}{rrr}
1 & 1 & 2 \\
-1 & -6 & 7
\end{array}\right]
$$

- Reordering the columns

$$
\left[\begin{array}{rrr}
2 & 1 & 1 \\
7 & -6 & -1
\end{array}\right]
$$

- Replacing columns one and two by the difference of the first and twice the second column and the second and third column, respectively, yields

$$
\left[\begin{array}{rrr}
0 & 0 & 1 \\
19 & -5 & -1
\end{array}\right] .
$$

- Reordering the columns

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 19 & -5
\end{array}\right] .
$$

- Continuing with the matrix $\boldsymbol{C}=[19,-5]$, we obtain successively, the matrices $[19,5],[4,5],[5,4],[1,4],[4,1],[0,1]$, and $[1,0]$. The integer normal form is:

$$
\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0
\end{array}\right]
$$

2.8 Characterization

$\boldsymbol{A} \in \mathcal{Z}^{m \times n}$, full row rank; $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$. Let $\boldsymbol{b} \in \mathcal{Z}^{m}$ and $S=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$.
(a) The set S is nonempty if and only if $\boldsymbol{B}^{-1} \boldsymbol{b} \in \mathcal{Z}^{m}$.
(b) If $S \neq \emptyset$, every solution of S is of the form

$$
\boldsymbol{x}=\boldsymbol{U}_{1} \boldsymbol{B}^{-1} \boldsymbol{b}+\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}
$$

where $\boldsymbol{U}_{1}, \boldsymbol{U}_{2}: \boldsymbol{U}=\left[\boldsymbol{U}_{1}, \boldsymbol{U}_{2}\right]$.
(c) $\mathcal{L}=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A x}=\mathbf{0}\right\}$ is a lattice and the column vectors of \boldsymbol{U}_{2} constitute a basis of \mathcal{L}.

2.9 Proof

- $\boldsymbol{y}=\boldsymbol{U}^{-1} \boldsymbol{x}$. Since \boldsymbol{U} is unimodular, $\boldsymbol{y} \in \mathcal{Z}^{n}$ if and only if $\boldsymbol{x} \in \mathcal{Z}^{n}$. Thus, S is nonempty if and only if there exists a $\boldsymbol{y} \in \mathcal{Z}^{n}$ such that $[\boldsymbol{B}, \mathbf{0}] \boldsymbol{y}=\boldsymbol{b}$. Since \boldsymbol{B} is invertible, the latter is true if and only $\boldsymbol{B}^{-1} \boldsymbol{b} \in \mathcal{Z}^{m}$.
- We can express the set S as follows:

$$
\begin{aligned}
S & =\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\} \\
& =\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U} \boldsymbol{y},[\boldsymbol{B}, \mathbf{0}] \boldsymbol{y}=\boldsymbol{b}, \boldsymbol{y} \in \mathcal{Z}^{n}\right\} \\
& =\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U}_{1} \boldsymbol{w}+\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{B} \boldsymbol{w}=\boldsymbol{b}, \boldsymbol{w} \in \mathcal{Z}^{m}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
\end{aligned}
$$

Thus, if $S \neq \emptyset$, then $\boldsymbol{B}^{-1} \boldsymbol{b} \in \mathcal{Z}^{m}$ from part (a) and hence,

$$
S=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U}_{1} \boldsymbol{B}^{-1} \boldsymbol{b}+\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
$$

- Let $\mathcal{L}=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A x}=\mathbf{0}\right\}$. By setting $\boldsymbol{b}=\mathbf{0}$ in part (b) we obtain that

$$
\mathcal{L}=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{x}=\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
$$

Thus, by definition, \mathcal{L} is a lattice with basis \boldsymbol{U}_{2}.

2.10 Example

- Is $S=\left\{\boldsymbol{x} \in \mathcal{Z}^{3} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$ is nonempty

$$
\boldsymbol{A}=\left[\begin{array}{lll}
3 & 6 & 1 \\
4 & 5 & 5
\end{array}\right] \text { and } \boldsymbol{b}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

- Integer normal form: $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$, with

$$
[\boldsymbol{B}, \mathbf{0}]=\left[\begin{array}{lll}
1 & 0 & 0 \\
5 & 1 & 0
\end{array}\right] \text { and } \boldsymbol{U}=\left[\begin{array}{rrr}
0 & 9 & -25 \\
0 & -4 & 11 \\
1 & -3 & 9
\end{array}\right]
$$

Note that $\operatorname{det}(\boldsymbol{U})=-1$. Since $\boldsymbol{B}^{-1} \boldsymbol{b}=(3,-13)^{\prime} \in \mathcal{Z}^{2}, S \neq \emptyset$.

- All integer solutions of S are given by

$$
\boldsymbol{x}=\left[\begin{array}{rr}
0 & 9 \\
0 & -4 \\
1 & -3
\end{array}\right]\left[\begin{array}{r}
3 \\
-13
\end{array}\right]+\left[\begin{array}{r}
-25 \\
11 \\
9
\end{array}\right] \quad z=\left[\begin{array}{r}
-117-25 z \\
52+11 z \\
42+9 z
\end{array}\right], \quad z \in \mathcal{Z} .
$$

2.11 Integral Farkas lemma

Let $\boldsymbol{A} \in \mathcal{Z}^{m \times n}, \boldsymbol{b} \in \mathcal{Z}^{m}$ and $S=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$.

- The set $S=\emptyset$ if and only if there exists a $\boldsymbol{y} \in \mathcal{Q}^{m}$, such that $\boldsymbol{y}^{\prime} \boldsymbol{A} \in \mathcal{Z}^{m}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$.
- The set $S=\emptyset$ if and only if there exists a $\boldsymbol{y} \in \mathcal{Q}^{m}$, such that $\boldsymbol{y} \geq \mathbf{0}$, $\boldsymbol{y}^{\prime} \boldsymbol{A} \in \mathcal{Z}^{m}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$.

2.12 Proof

- Assume that $S \neq \emptyset$. If there exists $\boldsymbol{y} \in \mathcal{Q}^{m}$, such that $\boldsymbol{y}^{\prime} \boldsymbol{A} \in \mathcal{Z}^{m}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$, then $\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}^{\prime} \boldsymbol{b}$ with $\boldsymbol{y}^{\prime} \boldsymbol{A} \boldsymbol{x} \in \mathcal{Z}$ and $\boldsymbol{y}^{\prime} \boldsymbol{b} \notin \mathcal{Z}$.
- Conversely, if $S=\emptyset$, then by previous theorem, $\boldsymbol{u}=\boldsymbol{B}^{-1} \boldsymbol{b} \notin \mathcal{Z}^{m}$, that is there exists an i such that $u_{i} \notin \mathcal{Z}$. Taking \boldsymbol{y} to be the i th row of \boldsymbol{B}^{-1} proves the theorem.

2.13 Reformulations

- max $\boldsymbol{c}^{\prime} \boldsymbol{x}, \boldsymbol{x} \in S=\left\{\boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right\}$.
- $[\boldsymbol{B}, \mathbf{0}]=\boldsymbol{A} \boldsymbol{U}$. There exists $\boldsymbol{x}^{0} \in \mathcal{Z}^{n}: \boldsymbol{A} \boldsymbol{x}^{0}=\boldsymbol{b}$ iff $\boldsymbol{B}^{-1} \boldsymbol{b} \notin \mathcal{Z}^{m}$.
-

$$
\boldsymbol{x} \in S \Longleftrightarrow \boldsymbol{x}=\boldsymbol{x}^{0}+\boldsymbol{y}: \quad \boldsymbol{A} y=\mathbf{0},-\boldsymbol{x}^{0} \leq \boldsymbol{y}
$$

Let

$$
\mathcal{L}=\left\{\boldsymbol{y} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{y}=\mathbf{0}\right\} .
$$

Let \boldsymbol{U}_{2} be a basis of \mathcal{L}, i.e.,

$$
\mathcal{L}=\left\{\boldsymbol{y} \in \mathcal{Z}^{n} \mid \boldsymbol{y}=\boldsymbol{U}_{2} \boldsymbol{z}, \boldsymbol{z} \in \mathcal{Z}^{n-m}\right\} .
$$

$\max \quad c^{\prime} \boldsymbol{U}_{2} \boldsymbol{z}$
s.t $\quad \boldsymbol{U}_{2} \boldsymbol{z} \geq-\boldsymbol{x}^{0}$ $z \in \mathcal{Z}^{n-m}$.

- Different bases give rise to alternative reformulations

$$
\begin{aligned}
\max & c^{\prime} \overline{\boldsymbol{B}} \boldsymbol{z} \\
\text { s.t. } & \overline{\boldsymbol{B}} \boldsymbol{z} \geq-\boldsymbol{x}^{0} \\
& \boldsymbol{z} \in \mathcal{Z}^{n-m} .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

