15.083J/6.859J Integer Optimization

Lecture 3: Methods to enhance formulations

1 Outline

- Polyhedral review
- Methods to generate valid inequalities
- Methods to generate facet defining inequalities

2 Polyhedral review

2.1 Dimension of polyhedra

• Definition: The vectors $x^1, \ldots, x^k \in \Re^n$ are affinely independent if the unique solution of the linear system

$$\sum_{i=1}^k a_i \boldsymbol{x}^i = \boldsymbol{0}, \qquad \sum_{i=1}^k a_i = \boldsymbol{0},$$

is $a_i = 0$ for all $i = 1, \ldots, k$.

• Proposition: The vectors $x^1, \ldots, x^k \in \Re^n$ are affinely independent if and only if the vectors $x^2 - x^1, \ldots, x^k - x^1$ are linearly independent.

SLIDE 3

SLIDE 4

SLIDE 2

• Definition: Let $P = \{ x \in \Re^n \mid Ax \ge b \}$. Then, the polyhedron P has dimension k, denoted dim(P) = k, if the maximum number of affinely independent points in P is k + 1.

• $P = \{(x_1, x_2) \mid x_1 - x_2 = 0, \ 0 \le x_1 \le 1, \ 0 \le x_2 \le 1\}, \dim(P) = ?$

2.2 Valid Inequalities

2.2.1 Definitions

- $a'x \ge b$ is called a valid inequality for a set P if it is satisfied by all points in P.
- Let $f'x \ge g$ be a valid inequality for a polyhedron P, and let $F = \{x \in P \mid f'x = g\}$. Then, F is called a face of P and we say that $f'x \ge g$ represents F. A face is called **proper** if $F \ne \emptyset$, P.
- A face F of P represented by the inequality $f'x \ge g$, is called a facet of P if dim $(F) = \dim(P) 1$. We say that the inequality $f'x \ge g$ is facet defining.

2.2.2 Theorem

Slide 5

SLIDE 6

SLIDE 7

- For each facet F of P, at least one of the inequalities representing F is necessary in any description of P.
- Every inequality representing a face of P of dimension less than $\dim(P)-1$ is not necessary in the description of P, and can be dropped.

2.2.3 Example

- $S = \{(x_1, x_2) \in \mathbb{Z}^2 \mid x_1 \leq 3, x_1 \geq 1, -x_1 + 2x_2 \leq 4, 2x_1 + x_2 \leq 8, x_1 + 2x_2 \geq 3\}.$
- Facets for $\operatorname{conv}(S)$: $x_1 \leq 3, x_1 \geq 1, x_1 + 2x_2 \geq 3, x_1 + x_2 \leq 5, -x_1 + x_2 \leq -1$.
- Faces of dimension one: $-x_1 + 2x_2 \le 4$, and $2x_1 + x_2 \le 8$.

3 Methods to generate valid inequalities

3.1 Rounding

• Choose $u = (u_1, \ldots, u_m)' \ge 0$; Multiply *i*th constraint with u_i and sum:

$$\sum_{j=1}^n (\boldsymbol{u}'\boldsymbol{A}_j)x_j \leq \boldsymbol{u}'\boldsymbol{b}.$$

• Since $\lfloor u'A_j \rfloor \leq u'A_j$ and $x_j \geq 0$:

$$\sum_{j=1}^n \left(\lfloor \boldsymbol{u}' \boldsymbol{A}_j \rfloor \right) x_j \leq \boldsymbol{u}' \boldsymbol{b}.$$

• As $\boldsymbol{x} \in \mathcal{Z}_{+}^{n}$: $\sum_{j=1}^{n} (\lfloor \boldsymbol{u}' \boldsymbol{A}_{j} \rfloor) \boldsymbol{x}_{j} \leq \lfloor \boldsymbol{u}' \boldsymbol{b} \rfloor$.

3.1.1 Matching

- $S = \left\{ x \in \{0,1\}^{|E|} \mid \sum_{e \in \delta(\{i\})} x_e \le 1, \ i \in V \right\}.$
- $U \subset V$, |U| = 2k + 1. For each $i \in U$, multiply $\sum_{e \in \delta(\{i\})} x_e \leq 1$ by 1/2, and add:

$$\sum_{e \in E(U)} x_e + \frac{1}{2} \sum_{e \in \delta(U)} x_e \le \frac{1}{2} |U|.$$

- Since $x_e \ge 0$, $\sum_{e \in E(U)} x_e \le \frac{1}{2}|U|$.
- Round to (|U| is odd)

$$\sum_{e \in E(U)} x_e \le \left\lfloor \frac{1}{2} |U| \right\rfloor = \frac{|U| - 1}{2},$$

3.2 Superadditivity

3.2.1 Definition

SLIDE 9

A function $F: D \subset \Re^n \mapsto \Re$ is **superadditive** if for $a_1, a_2 \in D$,: $a_1 + a_2 \in D$:

$$F(\boldsymbol{a}_1) + F(\boldsymbol{a}_2) \le F(\boldsymbol{a}_1 + \boldsymbol{a}_2),$$

It is **nondecreasing** if

$$F(\boldsymbol{a}_1) \leq F(\boldsymbol{a}_2), \text{ if } \boldsymbol{a}_1 \leq \boldsymbol{a}_2 \text{ for all } \boldsymbol{a}_1, \boldsymbol{a}_2 \in D.$$

3.2.2 Theorem

If $F : \Re^m \mapsto \Re$ is superadditive and nondecreasing with $F(\mathbf{0}) = 0$, $\sum_{j=1}^n F(\mathbf{A}_j) x_j \leq F(\mathbf{b})$ is valid for the set $S = \{ \mathbf{x} \in \mathbb{Z}_+^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}.$

3.2.3 Proof

By induction on x_j , we show: $F(\mathbf{A}_j)x_j \leq F(\mathbf{A}_jx_j)$. For $x_j = 0$ it is clearly true. Assuming it is true for $x_j = k - 1$, then

$$F(\boldsymbol{A}_j)k = F(\boldsymbol{A}_j) + F(\boldsymbol{A}_j)(k-1)$$

$$\leq F(\boldsymbol{A}_j) + F(\boldsymbol{A}_j(k-1))$$

$$\leq F(\boldsymbol{A}_j + \boldsymbol{A}_j(k-1)),$$

by superadditivity, and the induction is complete. Therefore,

$$\sum_{j=1}^{n} F(\boldsymbol{A}_j) x_j \le \sum_{j=1}^{n} F(\boldsymbol{A}_j x_j).$$

SLIDE 11

SLIDE 12

SLIDE 10

By superadditivity,

$$\sum_{j=1}^{n} F(\boldsymbol{A}_{j} \boldsymbol{x}_{j}) \leq F\left(\sum_{j=1}^{n} \boldsymbol{A}_{j} \boldsymbol{x}_{j}\right) = F(\boldsymbol{A} \boldsymbol{x}).$$

Since $Ax \leq b$ and F is nondecreasing

$$F(\mathbf{A}\mathbf{x}) \leq F(\mathbf{b}).$$

3.3 Modular arithmetic

$$S = \left\{ \boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \sum_{j=1}^{n} a_{j} x_{j} = a_{0}
ight\},$$

 $d \in \mathcal{Z}_+$. We write $a_j = b_j + u_j d$, where $b_j \ (0 \le b_j < d, b_j \in \mathcal{Z}_+)$. Then,

$$\sum_{j=1}^{n} b_j x_j = b_0 + rd, \text{ for some integer } r.$$

Since $\sum_{j=1}^{n} b_j x_j \ge 0$ and $b_0 < d$, we obtain $r \ge 0$. Then, $\sum_{j=1}^{n} b_j x_j \ge b_0$ is valid for S.

3.3.1 Examples

- $S = \{ x \in \mathbb{Z}_+^4 \mid 27x_1 + 17x_2 64x_3 + x_4 = 203 \}$. For d = 13, inequality $x_1 + 4x_2 + x_3 + x_4 \ge 8$ is valid for S.
- For d = 1, and a_j are not integers. In this case, since $x \ge 0$, we obtain $\sum_{j=1}^{n} \lfloor a_j \rfloor x_j \le a_0$. Since $x \in \mathbb{Z}$, $\sum_{j=1}^{n} \lfloor a_j \rfloor x_j \le \lfloor a_0 \rfloor$, and thus the following inequality is valid for S

$$\sum_{j=1}^{n} (a_j - \lfloor a_j \rfloor) x_j \ge a_0 - \lfloor a_0 \rfloor.$$

3.4 Disjunctions

3.4.1 Proposition

If the inequality $\sum_{j=1}^{n} a_j x_j \leq b$ is valid for $S_1 \subset \Re_+^n$, and the inequality $\sum_{j=1}^{n} c_j x_j \leq d$ is valid for $S_2 \subset \Re_+^n$, then the inequality

$$\sum_{j=1}^{n} \min(a_j, c_j) x_j \le \max(b, d)$$

is valid for $S_1 \cup S_2$.

SLIDE 14

SLIDE 15

3.4.2 Theorem

If the inequality $\sum_{j=1}^{n} a_j x_j - d(x_k - \alpha) \leq b$ is valid for S for some $d \geq 0$, and the inequality $\sum_{j=1}^{n} a_j x_j + c(x_k - \alpha - 1) \leq b$ is valid for S for some $c \geq 0$, then the inequality $\sum_{j=1}^{n} a_j x_j \leq b$ is valid for S. Example: In previous example, we write $-x_1 + 2x_2 \leq 4$ and $-x_1 \leq -1$ as follows:

$$(-x_1 + x_2) + (x_2 - 3) \le 1, \quad (-x_1 + x_2) - (x_2 - 2) \le 1.$$

 $\alpha = 2, -x_1 + x_2 \leq 1$ is valid.

3.5Mixed integer rounding

3.5.1 Proposition

• For $v \in \Re$, $f(v) = v - |v|, v^+ = \max\{0, v\}$.

•
$$X = \{(x, y) \in \mathbb{Z} \times \Re_+ \mid x - y \le b\}$$

• The inequality $x - \frac{1}{1 - f(b)} y \leq \lfloor b \rfloor$ is valid for $\operatorname{conv}(X)$.

3.5.2 Proof

- $P^1 = X \cap \{(x, y) \mid x \le |b|\},\$
- $P^2 = X \cap \{(x, y) \mid x \ge \lfloor b \rfloor + 1\}.$
- Add 1 f(b) times the inequality $x \lfloor b \rfloor \leq 0$ and $0 \leq y$: $(x \lfloor b \rfloor) (1 f(b)) \leq y$ is valid for P^1 .
- For P^2 we combine $-(x \lfloor b \rfloor) \leq -1$ and $x y \leq b$ with multipliers f(b) and 1: $(x - \lfloor b \rfloor)(1 - f(b)) \leq y$. By disjunction, $(x - \lfloor b \rfloor)(1 - f(b)) \leq y$ is valid for $\operatorname{conv}(P^1 \cup P^2) = \operatorname{conv}(X)$.

SLIDE 18

SLIDE 16

3.5.3 Theorem

$$S = \left\{ \boldsymbol{x} \in \mathcal{Z}_{+}^{n} \mid \sum_{j=1}^{n} \boldsymbol{A}_{j} x_{j} \leq \boldsymbol{b}, \quad j = 1, \dots, n \right\}.$$
 For every $\boldsymbol{u} \in \mathcal{Q}_{+}^{m}$ the inequality $\sum_{j=1}^{n} \left(\lfloor \boldsymbol{u}' \boldsymbol{A}_{j} \rfloor + \frac{[f(\boldsymbol{u}' \boldsymbol{A}_{j}) - f(\boldsymbol{u}' \boldsymbol{b})]^{+}}{1 - f(\boldsymbol{u}' \boldsymbol{b})} \right) x_{j} \leq \lfloor \boldsymbol{u}' \boldsymbol{b} \rfloor$ is valid for conv(S).

4 Facets

4.1 By the definition

4.1.1 Stable set

$$\begin{array}{ll} \max & \displaystyle \sum_{i \in V} w_i x_i \\ \text{s. t.} & \displaystyle x_i + x_j \leq 1, \qquad \forall \ \{i,j\} \in E, \\ & \displaystyle x_i \in \{0,1\}, \qquad \quad i \in V. \end{array}$$

A collection of nodes U, such that for all $i, j \in U$, $\{i, j\} \in E$ is called a **clique**.

$$\sum_{i \in U} x_i \le 1, \qquad \text{for any clique } U \ (*)$$

is valid.

- A clique U is maximal if for all $i \in V \setminus U, U \cup \{i\}$ is not a clique.
- (*) is facet defining if and only if U is a maximal clique.
- $U = \{1, ..., k\}$. Then, $e_i, i = 1, ..., k$ satisfy (*) with equality.
- For each $i \notin U$, there is a node $j = r(i) \in U$, such that $(i, r(i)) \notin E$. x^i with $x_i^i = 1, x_{r(i)}^i = 1$, and zero elsewhere is in S, and satisfies inequality (*) with equality.
- $e_1, \ldots, e_k, x^{k+1}, \ldots, x^n$ are linearly independent; hence, affinely independent. SLIDE 22

Conversely, since U is not maximal, there is a node $i \notin U$ such that $U \cup \{i\}$ is a clique, and thus $\sum_{j \in U \cup \{i\}} x_j \leq 1$ (**) is valid for conv(S). Since inequality (*) is the sum of $-x_i \leq 0$ and inequality (**), then (*) is not facet defining.

4.2 Lifting

$\max \sum_{i=1}^{6} x_i$							Slide Slide	Slide 23 Slide 24
x_1	$+ x_2$	$x_2 + x_3$			≤ 1			
x_1		$+ x_3 +$	x_4		≤ 1			
x_1	+		$x_4 + x_5$		≤ 1			
x_1	+		x_5	$+ x_{6}$	≤ 1			
x_1	$+ x_2$	2		$+ x_{6}$	$\leq 1.$			
	0							

unique optimal solution $x^0 = (1/2)(0, 1, 1, 1, 1, 1)'$. Do maximal clique inequalities describe convex hull?

SLIDE 20

SLIDE 19

SLIDE 21

• x^0 does not satisfy

$$x_2 + x_3 + x_4 + x_5 + x_6 < 2.$$
 (1)

- Stable sets {2,4}, {2,5}, {3,5}, {3,6}, {4,6} satisfy it with equality. Not facet, since there are no other stable sets that satisfy (1) with equality.
- (1) is facet defining for $S \cap \{ x \in \{0,1\}^6 \mid x_1 = 0 \}$.
- Consider $ax_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 2, a > 0.$
- Select a in order for (1) to be still valid, and to define a facet for S.
- SLIDE 26

- For $x_1 = 0$, (1) is valid for all a.
- If $x_1 = 1$, $a \le 2 x_2 x_3 x_4 x_5 x_6$. Since $x_1 = 1$ implies $x_2 = \cdots = x_6 = 0$, then $a \le 2$. Therefore, if $0 \le a \le 2$, (1) is valid.
- For $a = 2, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 6\}, \{4, 6\}$, and $\{1\}$ satisfy it with equality.
- $2x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 2$, is valid and defines a facet conv(S).

4.2.1 General principle

SLIDE 27 Suppose $S \subset \{0,1\}^n$, $S^i = S \cap \{ \mathbf{x} \in \{0,1\}^n \mid x_1 = i \}$, $i = 0, 1, \text{ and } \sum_{j=2}^n a_j x_j \le a_0$ (2) is valid for S^0 .

- If $S^1 = \emptyset$, then $x_1 \leq 0$ is valid for S.
- If $S^1 \neq \emptyset$, then $a_1x_1 + \sum_{j=2}^n a_jx_j \le a_0$ (3) is valid for S for any $a_1 \le a_0 Z$, $Z = \sum_{j=2}^n a_jx_j$ s.t. $\boldsymbol{x} \in S^1$.
- If $a_1 = a_0 Z$ and (2) defines a face of dimension k of $\operatorname{conv}(S^0)$, then (3) gives a face of dimension k + 1 of $\operatorname{conv}(S)$.

4.2.2 Geometry

SLIDE 29

4.2.3 Order of lifting

- $P = \operatorname{conv} \{ \boldsymbol{x} \in \{0,1\}^6 \mid 5x_1 + 5x_2 + 5x_3 + 5x_4 + 3x_5 + 8x_6 \le 17 \}.$
- $x_1 + x_2 + x_3 + x_4 \le 3$ is valid for $P \cap \{x_5 = x_6 = 0\}$.
- Lifting on x_5 and then on x_6 , yields $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 3$.
- Lifting on x_6 and then on x_5 , yields $x_1 + x_2 + x_3 + x_4 + 2x_6 \le 3$.

15.083J/6.859J Integer Optimization

Lecture 13: Lattices I

1 Outline

- Integer points in lattices.
- Is $\{x \in \mathbb{Z}^n \mid Ax = b\}$ nonempty?

2 Integer points in lattices

• $\boldsymbol{B} = [\boldsymbol{b}^1, \dots, \boldsymbol{b}^d] \in \mathcal{R}^{n \times d}, \, \boldsymbol{b}^1, \dots, \boldsymbol{b}^d$ are linearly independent.

$$\mathcal{L} = \mathcal{L}(\boldsymbol{B}) = \{ \boldsymbol{y} \in \mathcal{R}^n \mid \boldsymbol{y} = \boldsymbol{B} \boldsymbol{v}, \;\; \boldsymbol{v} \in \mathcal{Z}^d \}$$

is called the **lattice** generated by B. B is called a **basis** of $\mathcal{L}(B)$.

- $\boldsymbol{b}^i = \boldsymbol{e}_i, i = 1, \dots, n \; \boldsymbol{e}_i$ is the *i*-th unit vector, then $\mathcal{L}(\boldsymbol{e}_1, \dots, \boldsymbol{e}_n) = \mathcal{Z}^n$.
- $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B})$ and $\lambda, \mu \in \mathcal{Z}, \lambda \boldsymbol{x} + \mu \boldsymbol{y} \in \mathcal{L}(\boldsymbol{B}).$

2.1 Multiple bases

SLIDE 3
$$b^1 = (1,2)', b^2 = (2,1)', b^3 = (1,-1)'.$$
 Then, $\mathcal{L}(b^1, b^2) = \mathcal{L}(b^2, b^3).$

SLIDE 1

2.2 Alternative bases

Let $\boldsymbol{B} = [\boldsymbol{b}^1, \dots, \boldsymbol{b}^d]$ be a basis of the lattice \mathcal{L} .

- If $U \in \mathcal{R}^{d \times d}$ is unimodular, then $\overline{B} = BU$ is a basis of the lattice \mathcal{L} .
- If B and \overline{B} are bases of \mathcal{L} , then there exists a unimodular matrix U such that $\overline{B} = BU$.
- If **B** and \overline{B} are bases of \mathcal{L} , then $|\det(B)| = |\det(\overline{B})|$.

2.3 Proof

- For all $x \in \mathcal{L}$: x = Bv with $v \in \mathbb{Z}^d$.
- $\det(U) = \pm 1$, and $\det(U^{-1}) = 1/\det(U) = \pm 1$.
- $x = BUU^{-1}v$.
- From Cramer's rule, U^{-1} has integral coordinates, and thus $w = U^{-1}v$ is integral.
- $\overline{B} = BU$. Then, $x = \overline{B}w$, with $w \in \mathbb{Z}^d$, which implies that \overline{B} is a basis of \mathcal{L} .
- $B = [b^1, \ldots, b^d]$ and $\overline{B} = [\overline{b}^1, \ldots, \overline{b}^d]$ be bases of \mathcal{L} . Then, the vectors b^1, \ldots, b^d and the vectors $\overline{b}^1, \ldots, \overline{b}^d$ are both linearly independent.
- $V = \{ By \mid y \in \mathbb{R}^n \} = \{ \overline{B}y \mid y \in \mathbb{R}^n \}.$
- There exists an invertible $d \times d$ matrix \boldsymbol{U} such that

$$B = \overline{B}U$$
 and $\overline{B} = BU^{-1}$.

- $\boldsymbol{b}^i = \overline{\boldsymbol{B}} \boldsymbol{U}_i, \ \boldsymbol{U}_i \in \boldsymbol{\mathcal{Z}}^d \text{ and } \overline{\boldsymbol{b}}^i = \boldsymbol{B} \boldsymbol{U}_i^{-1}, \ \boldsymbol{U}_i^{-1} \in \boldsymbol{\mathcal{Z}}^d.$
- U and U⁻¹ are both integral, and thus both det(U) and det(U⁻¹) are integral, leading to det(U) = ±1.
- $|\det(\overline{B})| = |\det(B)| |\det(U)| = |\det(B)|.$

2.4 Convex Body Theorem

Let \mathcal{L} be a lattice in \mathcal{R}^n and let $A \in \mathcal{R}^n$ be a convex set such that $\operatorname{vol}(A) > 2^n \operatorname{det}(\mathcal{L})$ and A is symmetric around the origin, i.e., $z \in A$ if and only if $-z \in A$. Then A contains a non-zero lattice point.

2.5 Integer normal form

- $A \in \mathbb{Z}^{m \times n}$ of full row rank is in **integer normal form**, if it is of the form [B, 0], where $B \in \mathbb{Z}^{m \times m}$ is invertible, has integral elements and is lower triangular.
- Elementary operations:
 - (a) Exchanging two columns;
 - (b) Multiplying a column by -1.
 - (c) Adding an integral multiple of one column to another.
- Theorem: (a) A full row rank $A \in \mathbb{Z}^{m \times n}$ can be brought into the integer normal form [B, 0] using elementary column operations;
 - (b) There is a unimodular matrix U such that [B, 0] = AU.

SLIDE 7

SLIDE 6

SLIDE 4

Slide 5

2.6 Proof

• We show by induction that by applying elementary column operations (a)-(c), we can transform A to

$$\left[\begin{array}{cc} \alpha & \mathbf{0} \\ \mathbf{v} & \mathbf{C} \end{array}\right],\tag{1}$$

where $\alpha \in \mathbb{Z}_+ \setminus \{0\}$, $v \in \mathbb{Z}^{m-1}$ and $C \in \mathbb{Z}^{(m-1) \times (n-1)}$ is of full row rank. By proceeding inductively on the matrix C we prove part (a).

• By iteratively exchanging two columns of A (Operation (a)) and possibly multiplying columns by -1 (Operation (b)), we can transform A (and renumber the column indices) such that

$$a_{1,1} \ge a_{1,2} \ge \ldots \ge a_{1,n} \ge 0.$$

• Since A is of full row rank, $a_{1,1} > 0$. Let $k = \max\{i : a_{1,i} > 0\}$. If k = 1, then we have transformed A into a matrix of the form (1). Otherwise, $k \ge 2$ and by applying k - 1 operations (c) we transform A to

$$\overline{\boldsymbol{A}} = \left[\boldsymbol{A}_1 - \left\lfloor \frac{a_{1,1}}{a_{1,2}} \right\rfloor \boldsymbol{A}_2, \dots, \boldsymbol{A}_{k-1} - \left\lfloor \frac{a_{1,k-1}}{a_{1,k}} \right\rfloor \boldsymbol{A}_k, \boldsymbol{A}_k, \boldsymbol{A}_{k+1}, \dots, \boldsymbol{A}_n \right].$$

• Repeat the process to \overline{A} , and exchange two columns of \overline{A} such that

$$\overline{a}_{1,1} \ge \overline{a}_{1,2} \ge \ldots \ge \overline{a}_{1,n} \ge 0.$$

• $\max\{i: \overline{a}_{1,i} > 0\} \le k$

$$\sum_{i=1}^{k} \overline{a}_{1,i} \le \sum_{i=1}^{k-1} (a_{1,i} - a_{1,i+1}) + a_{1,k} = a_{1,1} < \sum_{i=1}^{k} a_{1,i},$$

which implies that after a finite number of iterations A is transformed by elementary column operations (a)-(c) into a matrix of the form (1).

• Each of the elementary column operations corresponds to multiplying matrix **A** by a unimodular matrix as follows:

(i) Exchanging columns k and j of matrix A corresponds to multiplying matrix A by a unimodular matrix $U_1 = I + I_{k,j} + I_{j,k} - I_{k,k} - I_{j,j}$. det $(U_1) = -1$.

(ii) Multiplying column j by -1 corresponds to multiplying matrix A by a unimodular matrix $U_2 = I - 2I_{j,j}$, that is an identity matrix except that element (j, j) is -1. det $(U_2) = -1$.

(iii) Adding $f \in \mathbb{Z}$ times column k to column j, corresponds to multiplying matrix A by a unimodular matrix $U_3 = I + fI_{k,j}$. Since det $(U_3) = 1$, U_3 is unimodular.

• Performing two elementary column operations corresponds to multiplying the corresponding unimodular matrices resulting in another unimodular matrix.

2.7 Example

$$\begin{array}{ccc} 3 & -4 & 2 \\ 1 & 0 & 7 \end{array} \end{array} \longrightarrow \left[\begin{array}{ccc} 4 & 3 & 2 \\ 0 & 1 & 7 \end{array} \right] \\ \left[\begin{array}{ccc} 1 & 1 & 2 \\ -1 & -6 & 7 \end{array} \right]$$

• Reordering the columns

$$\left[\begin{array}{rrrr} 2 & 1 & 1 \\ 7 & -6 & -1 \end{array}\right]$$

• Replacing columns one and two by the difference of the first and twice the second column and the second and third column, respectively, yields

$$\left[\begin{array}{rrrr} 0 & 0 & 1 \\ 19 & -5 & -1 \end{array}\right].$$

• Reordering the columns

 $\left[\begin{array}{rrrr} 1 & 0 & 0 \\ -1 & 19 & -5 \end{array}\right].$

• Continuing with the matrix C = [19, -5], we obtain successively, the matrices [19, 5], [4, 5], [5, 4], [1, 4], [4, 1], [0, 1], and [1, 0]. The integer normal form is:

Γ	1	0	0]
	-1	1	0	

2.8 Characterization

 $A \in \mathbb{Z}^{m \times n}$, full row rank; [B, 0] = AU. Let $b \in \mathbb{Z}^m$ and $S = \{x \in \mathbb{Z}^n \mid Ax = b\}$.

- (a) The set S is nonempty if and only if $B^{-1}b \in \mathbb{Z}^m$.
- (b) If $S \neq \emptyset$, every solution of S is of the form

$$oldsymbol{x} = oldsymbol{U}_1 oldsymbol{B}^{-1} oldsymbol{b} + oldsymbol{U}_2 oldsymbol{z}, \ oldsymbol{z} \in \mathcal{Z}^{n-m},$$

where $\boldsymbol{U}_1, \, \boldsymbol{U}_2$: $\boldsymbol{U} = [\boldsymbol{U}_1, \boldsymbol{U}_2].$

(c) $\mathcal{L} = \{x \in \mathbb{Z}^n \mid Ax = 0\}$ is a lattice and the column vectors of U_2 constitute a basis of \mathcal{L} .

2.9 Proof

• $y = U^{-1}x$. Since U is unimodular, $y \in \mathbb{Z}^n$ if and only if $x \in \mathbb{Z}^n$. Thus, S is nonempty if and only if there exists a $y \in \mathbb{Z}^n$ such that [B, 0]y = b. Since B is invertible, the latter is true if and only $B^{-1}b \in \mathbb{Z}^m$.

SLIDE 10

SLIDE 11

Slide 9

• We can express the set S as follows:

$$S = \{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \}$$

= $\{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{x} = \boldsymbol{U}\boldsymbol{y}, \ [\boldsymbol{B}, \boldsymbol{0}]\boldsymbol{y} = \boldsymbol{b}, \ \boldsymbol{y} \in \mathcal{Z}^n \}$
= $\{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{x} = \boldsymbol{U}_1 \boldsymbol{w} + \boldsymbol{U}_2 \boldsymbol{z}, \ \boldsymbol{B}\boldsymbol{w} = \boldsymbol{b}, \ \boldsymbol{w} \in \mathcal{Z}^m, \ \boldsymbol{z} \in \mathcal{Z}^{n-m} \}$

Thus, if $S \neq \emptyset$, then $B^{-1}b \in \mathbb{Z}^m$ from part (a) and hence,

$$S = \{ \boldsymbol{x} \in \mathcal{Z}^n \mid \boldsymbol{x} = \boldsymbol{U}_1 \boldsymbol{B}^{-1} \boldsymbol{b} + \boldsymbol{U}_2 \boldsymbol{z}, \ \boldsymbol{z} \in \mathcal{Z}^{n-m} \}$$

• Let $\mathcal{L} = \{ x \in \mathbb{Z}^n \mid Ax = 0 \}$. By setting b = 0 in part (b) we obtain that $\mathcal{L} = \{ x \in \mathbb{Z}^n \mid x = U_2 z, \ z \in \mathbb{Z}^{n-m} \}.$

Thus, by definition, \mathcal{L} is a lattice with basis U_2 .

2.10 Example

• Is $S = \{ \boldsymbol{x} \in \mathcal{Z}^3 \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \}$ is nonempty

$$\boldsymbol{A} = \left[\begin{array}{cc} 3 & 6 & 1 \\ 4 & 5 & 5 \end{array} \right] \text{ and } \boldsymbol{b} = \left[\begin{array}{c} 3 \\ 2 \end{array} \right].$$

• Integer normal form: [B, 0] = AU, with

$$[\boldsymbol{B}, \boldsymbol{0}] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 5 & 1 & 0 \end{array} \right] \text{ and } \boldsymbol{U} = \left[\begin{array}{ccc} 0 & 9 & -25 \\ 0 & -4 & 11 \\ 1 & -3 & 9 \end{array} \right].$$

Note that $\det(\boldsymbol{U}) = -1$. Since $\boldsymbol{B}^{-1}\boldsymbol{b} = (3, -13)' \in \mathcal{Z}^2, \ S \neq \emptyset$.

• All integer solutions of S are given by

$$\boldsymbol{x} = \begin{bmatrix} 0 & 9\\ 0 & -4\\ 1 & -3 \end{bmatrix} \begin{bmatrix} 3\\ -13 \end{bmatrix} + \begin{bmatrix} -25\\ 11\\ 9 \end{bmatrix} \boldsymbol{z} = \begin{bmatrix} -117 & -25z\\ 52 & +11z\\ 42 & +9z \end{bmatrix}, \quad z \in \mathcal{Z}.$$

2.11 Integral Farkas lemma

Let $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$ and $S = \{x \in \mathbb{Z}^n \mid Ax = b\}$.

- The set $S = \emptyset$ if and only if there exists a $y \in Q^m$, such that $y'A \in Z^m$ and $y'b \notin Z$.
- The set $S = \emptyset$ if and only if there exists a $y \in Q^m$, such that $y \ge 0$, $y'A \in Z^m$ and $y'b \notin Z$.

2.12 Proof

- Assume that $S \neq \emptyset$. If there exists $y \in Q^m$, such that $y'A \in Z^m$ and $y'b \notin Z$, then y'Ax = y'b with $y'Ax \in Z$ and $y'b \notin Z$.
- Conversely, if $S = \emptyset$, then by previous theorem, $\boldsymbol{u} = \boldsymbol{B}^{-1}\boldsymbol{b} \notin \mathbb{Z}^m$, that is there exists an *i* such that $u_i \notin \mathbb{Z}$. Taking \boldsymbol{y} to be the *i*th row of \boldsymbol{B}^{-1} proves the theorem.

SLIDE 12

SLIDE 13

2.13 Reformulations

- max c'x, $x \in S = \{x \in Z_+^n \mid Ax = b\}$.
- [B, 0] = AU. There exists $x^0 \in \mathbb{Z}^n$: $Ax^0 = b$ iff $B^{-1}b \notin \mathbb{Z}^m$.

•

$$x \in S \iff x = x^0 + y : Ay = 0, -x^0 \le y.$$

Let

$$\mathcal{L} = \{ m{y} \in \mathcal{Z}^n \mid Am{y} = m{0} \}.$$

Let \boldsymbol{U}_2 be a basis of \mathcal{L} , i.e.,

$$\mathcal{L} = \{ oldsymbol{y} \in \mathcal{Z}^n \mid oldsymbol{y} = oldsymbol{U}_2 oldsymbol{z}, \ oldsymbol{z} \in \mathcal{Z}^{n-m} \}.$$

•

• Different bases give rise to alternative reformulations

$$\begin{array}{ll} \max & \boldsymbol{c}' \boldsymbol{B} \boldsymbol{z} \\ \text{s.t.} & \overline{\boldsymbol{B}} \boldsymbol{z} \geq - \boldsymbol{x}^0 \\ & \boldsymbol{z} \in \mathcal{Z}^{n-m}. \end{array}$$

_

15.083J / 6.859J Integer Programming and Combinatorial Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.