15.083J/6.859J Integer Optimization

Lecture 10: Solving Relaxations

1 Outline

- The key geometric result behind the ellipsoid method
- The ellipsoid method for the feasibility problem
- The ellipsoid method for optimization
- Problems with exponentially many constraints

2 The Ellipsoid method

- \boldsymbol{D} is an $n \times n$ positive definite symmetric matrix
- A set E of vectors in \Re^{n} of the form

$$
E=E(\boldsymbol{z}, \boldsymbol{D})=\left\{\boldsymbol{x} \in \Re^{n} \mid(\boldsymbol{x}-\boldsymbol{z})^{\prime} \boldsymbol{D}^{-1}(\boldsymbol{x}-\boldsymbol{z}) \leq 1\right\}
$$

is called an ellipsoid with center $\boldsymbol{z} \in \Re^{n}$

2.1 The algorithm intuitively

- Problem: Decide whether a given polyhedron

$$
P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}
$$

is nonempty

- Key property: We can find a new ellipsoid E_{t+1} that covers the halfellipsoid and whose volume is only a fraction of the volume of the previous ellipsoid E_{t}

2.2 Key Theorem

- $E=E(\boldsymbol{z}, \boldsymbol{D})$ be an ellipsoid in $\Re^{n} ; \boldsymbol{a}$ nonzero n-vector.
- $H=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{a}^{\prime} \boldsymbol{x} \geq \boldsymbol{a}^{\prime} \boldsymbol{z}\right\}$

$$
\begin{aligned}
\bar{z} & =\boldsymbol{z}+\frac{1}{n+1} \frac{\boldsymbol{D a}}{\sqrt{\boldsymbol{a}^{\prime} \boldsymbol{D a}}}, \\
\overline{\boldsymbol{D}} & =\frac{n^{2}}{n^{2}-1}\left(\boldsymbol{D}-\frac{2}{n+1} \frac{\boldsymbol{D a \boldsymbol { a } ^ { \prime } \boldsymbol { D }}}{\boldsymbol{a}^{\prime} \boldsymbol{D} \boldsymbol{a}}\right) .
\end{aligned}
$$

- The matrix $\overline{\boldsymbol{D}}$ is symmetric and positive definite and thus $E^{\prime}=E(\overline{\boldsymbol{z}}, \overline{\boldsymbol{D}})$ is an ellipsoid
- $E \cap H \subset E^{\prime}$
- $\operatorname{Vol}\left(E^{\prime}\right)<e^{-1 /(2(n+1))} \operatorname{Vol}(E)$

2.3 Illustration

2.4 Assumptions

- A polyhedron P is full-dimensional if it has positive volume
- The polyhedron P is bounded: there exists a ball $E_{0}=E\left(\boldsymbol{x}_{0}, r^{2} \boldsymbol{I}\right)$, with volume V, that contains P
- Either P is empty, or P has positive volume, i.e., $\operatorname{Vol}(P)>v$ for some $v>0$
- E_{0}, v, V, are a priori known
- We can make our calculations in infinite precision; square roots can be computed exactly in unit time

2.5 Input-Output

Input:

- A matrix \boldsymbol{A} and a vector \boldsymbol{b} that define the polyhedron $P=\left\{\boldsymbol{x} \in \Re^{n} \mid\right.$ $\left.\boldsymbol{a}_{i}^{\prime} \boldsymbol{x} \geq b_{i}, i=1, \ldots, m\right\}$
- A number v, such that either P is empty or $\operatorname{Vol}(P)>v$
- A ball $E_{0}=E\left(\boldsymbol{x}_{0}, r^{2} \boldsymbol{I}\right)$ with volume at most V, such that $P \subset E_{0}$

Output: A feasible point $\boldsymbol{x}^{*} \in P$ if P is nonempty, or a statement that P is empty

2.6 The algorithm

1. (Initialization)

Let $t^{*}=\lceil 2(n+1) \log (V / v)\rceil ; E_{0}=E\left(\boldsymbol{x}_{0}, r^{2} \boldsymbol{I}\right) ; \boldsymbol{D}_{0}=r^{2} \boldsymbol{I} ; t=0$.
2. (Main iteration)

- If $t=t^{*}$ stop; P is empty.
- If $\boldsymbol{x}_{t} \in P$ stop; P is nonempty.
- If $\boldsymbol{x}_{t} \notin P$ find a violated constraint, that is, find an i such that $\boldsymbol{a}_{i}^{\prime} \boldsymbol{x}_{t}<b_{i}$.
- Let $H_{t}=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{a}_{i}^{\prime} \boldsymbol{x} \geq \boldsymbol{a}_{i}^{\prime} \boldsymbol{x}_{t}\right\}$. Find an ellipsoid E_{t+1} containing $E_{t} \cap H_{t}$: $E_{t+1}=E\left(\boldsymbol{x}_{t+1}, \boldsymbol{D}_{t+1}\right)$ with

$$
\begin{aligned}
\boldsymbol{x}_{t+1} & =\boldsymbol{x}_{t}+\frac{1}{n+1} \frac{\boldsymbol{D}_{t} \boldsymbol{a}_{i}}{\sqrt{\boldsymbol{a}_{i}^{\prime} \boldsymbol{D}_{t} \boldsymbol{a}_{i}}} \\
\boldsymbol{D}_{t+1} & =\frac{n^{2}}{n^{2}-1}\left(\boldsymbol{D}_{t}-\frac{2}{n+1} \frac{\boldsymbol{D}_{t} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\prime} \boldsymbol{D}_{t}}{\boldsymbol{a}_{i}^{\prime} \boldsymbol{D}_{t} \boldsymbol{a}_{i}}\right) .
\end{aligned}
$$

- $t:=t+1$.

2.7 Correctness

Theorem: Let P be a bounded polyhedron that is either empty or full-dimensional and for which the prior information $\boldsymbol{x}_{0}, r, v, V$ is available. Then, the ellipsoid method decides correctly whether P is nonempty or not, i.e., if $\boldsymbol{x}_{t^{*}-1} \notin P$, then P is empty

2.8 Proof

- If $\boldsymbol{x}_{t} \in P$ for $t<t^{*}$, then the algorithm correctly decides that P is nonempty
- Suppose $\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{t^{*}-1} \notin P$. We will show that P is empty.
- We prove by induction on k that $P \subset E_{k}$ for $k=0,1, \ldots, t^{*}$. Note that $P \subset E_{0}$, by the assumptions of the algorithm, and this starts the induction.
- Suppose $P \subset E_{k}$ for some $k<t^{*}$. Since $\boldsymbol{x}_{k} \notin P$, there exists a violated inequality: $\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x} \geq \boldsymbol{b}_{i(k)}$ be a violated inequality, i.e., $\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x}_{k}<\boldsymbol{b}_{i(k)}$, where \boldsymbol{x}_{k} is the center of the ellipsoid E_{k}
- For any $\boldsymbol{x} \in P$, we have

$$
\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x} \geq \boldsymbol{b}_{i(k)}>\boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x}_{k}
$$

- Hence, $P \subset H_{k}=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x} \geq \boldsymbol{a}_{i(k)}^{\prime} \boldsymbol{x}_{k}\right\}$
- Therefore, $P \subset E_{k} \cap H_{k}$

By key geometric property, $E_{k} \cap H_{k} \subset E_{k+1}$; hence $P \subset E_{k+1}$ and the induction is complete

$$
\begin{gathered}
\frac{\operatorname{Vol}\left(E_{t+1}\right)}{\operatorname{Vol}\left(E_{t}\right)}<e^{-1 /(2(n+1))} \\
\frac{\operatorname{Vol}\left(E_{t^{*}}\right)}{\operatorname{Vol}\left(E_{0}\right)}<e^{-t^{*} /(2(n+1))} \\
\operatorname{Vol}\left(E_{t^{*}}\right)<V e^{\left.-\Gamma 2(n+1) \log \frac{V}{v}\right\rceil /(2(n+1))} \leq V e^{-\log \frac{V}{v}}=v
\end{gathered}
$$

If the ellipsoid method has not terminated after t^{*} iterations, then $\operatorname{Vol}(P) \leq \operatorname{Vol}\left(E_{t^{*}}\right) \leq$ v. This implies that P is empty

2.9 Binary Search

- $P=\{x \in \Re \mid x \geq 0, x \geq 1, x \leq 2, x \leq 3\}$
- $E_{0}=[0,5]$, centered at $x_{0}=2.5$
- Since $x_{0} \notin P$, the algorithm chooses the violated inequality $x \leq 2$ and constructs E_{1} that contains the interval $E_{0} \cap\{x \mid x \leq 2.5\}=[0,2.5]$
- The ellipsoid E_{1} is the interval $[0,2.5]$ itself
- Its center $x_{1}=1.25$ belongs to P
- This is binary search

2.10 Boundedness of \mathbf{P}

Let \boldsymbol{A} be an $m \times n$ integer matrix and let \boldsymbol{b} a vector in \Re^{n}. Let U be the largest absolute value of the entries in \boldsymbol{A} and \boldsymbol{b}.
Every extreme point of the polyhedron $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$ satisfies

$$
-(n U)^{n} \leq x_{j} \leq(n U)^{n}, \quad j=1, \ldots, n
$$

- All extreme points of P are contained in

$$
P_{B}=\left\{\boldsymbol{x} \in P| | x_{j} \mid \leq(n U)^{n}, j=1, \ldots, n\right\}
$$

- Since $P_{B} \subseteq E\left(\mathbf{0}, n(n U)^{2 n} \boldsymbol{I}\right)$, we can start the ellipsoid method with $E_{0}=$ $E\left(\mathbf{0}, n(n U)^{2 n} \boldsymbol{I}\right)$

$$
\operatorname{Vol}\left(E_{0}\right) \leq V=\left(2 n(n U)^{n}\right)^{n}=(2 n)^{n}(n U)^{n^{2}}
$$

2.11 Full-dimensionality

Let $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$. We assume that \boldsymbol{A} and \boldsymbol{b} have integer entries, which are bounded in absolute value by U. Let

$$
\epsilon=\frac{1}{2(n+1)}((n+1) U)^{-(n+1)}
$$

Let

$$
P_{\epsilon}=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}-\epsilon \boldsymbol{e}\right\}
$$

where $\boldsymbol{e}=(1,1, \ldots, 1)$.
(a) If P is empty, then P_{ϵ} is empty.
(b) If P is nonempty, then P_{ϵ} is full-dimensional.

Let $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$ be a full-dimensional bounded polyhedron, where the entries of \boldsymbol{A} and \boldsymbol{b} are integer and have absolute value bounded by U. Then,

$$
\operatorname{Vol}(P)>v=n^{-n}(n U)^{-n^{2}(n+1)}
$$

2.12 Complexity

- $P=\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$, where $\boldsymbol{A}, \boldsymbol{b}$ have integer entries with magnitude bounded by some U and has full rank. If P is bounded and either empty or full-dimensional, the ellipsoid method decides if P is empty in $O(n \log (V / v))$ iterations
- $v=n^{-n}(n U)^{-n^{2}(n+1)}, \quad V=(2 n)^{n}(n U)^{n^{2}}$
- Number of iterations $O\left(n^{4} \log (n U)\right)$
- If P is arbitrary, we first form P_{B}, then perturb P_{B} to form $P_{B, \epsilon}$ and apply the ellipsoid method to $P_{B, \epsilon}$
- Number of iterations is $O\left(n^{6} \log (n U)\right)$.
- It has been shown that only $O\left(n^{3} \log U\right)$ binary digits of precision are needed, and the numbers computed during the algorithm have polynomially bounded size
- The linear programming feasibility problem with integer data can be solved in polynomial time

3 The ellipsoid method for optimization

$$
\begin{aligned}
\min & \boldsymbol{c}^{\prime} \boldsymbol{x} & \max & \boldsymbol{b}^{\prime} \boldsymbol{\pi} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}, & \text { s.t. } & \boldsymbol{A}^{\prime} \boldsymbol{\pi}=\boldsymbol{c}
\end{aligned}
$$

$$
\pi \geq 0
$$

By strong duality, both problems have optimal solutions if and only if the following system of linear inequalities is feasible:

$$
b^{\prime} p=c^{\prime} x, \quad A x \geq b, \quad A^{\prime} p=c, \quad p \geq \mathbf{0}
$$

LO with integer data can be solved in polynomial time.

3.1 Sliding objective

- We first run the ellipsoid method to find a feasible solution $\boldsymbol{x}_{0} \in P=$ $\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}\right\}$.
- We apply the ellipsoid method to decide whether the set

$$
P \cap\left\{x \in \Re^{n} \mid c^{\prime} \boldsymbol{x}<\boldsymbol{c}^{\prime} \boldsymbol{x}_{0}\right\}
$$

is empty.

- If it is empty, then \boldsymbol{x}_{0} is optimal. If it is nonempty, we find a new solution \boldsymbol{x}_{1} in P with objective function value strictly smaller than $\boldsymbol{c}^{\prime} \boldsymbol{x}_{0}$.

More generally, every time a better feasible solution \boldsymbol{x}_{t} is found, we take $P \cap\left\{\boldsymbol{x} \in \Re^{n} \mid \boldsymbol{c}^{\prime} \boldsymbol{x}<\boldsymbol{c}^{\prime} \boldsymbol{x}_{t}\right\}$ as the new set of inequalities and reapply the ellipsoid method.

3.2 Performance in practice

- Very slow convergence, close to the worst case
- Contrast with simplex method
- The ellipsoid method is a tool for classifying the complexity of linear programming problems

4 Problems

4.1 Example

$$
\begin{gathered}
\min \sum_{i} c_{i} x_{i} \\
\sum_{i \in S} a_{i} x_{i} \geq|S|, \quad \text { for all subsets } S \text { of }\{1, \ldots, n\}
\end{gathered}
$$

- There are 2^{n} constraints, but are described concisely in terms of the n scalar parameters a_{1}, \ldots, a_{n}
- Question: Suppose we apply the ellipsoid algorithm. Is it polynomial?
- In what?

4.2 The input

- Consider min $\boldsymbol{c}^{\prime} \boldsymbol{x}$ s.t. $\boldsymbol{x} \in P$
- P belongs to a family of polyhedra of special structure
- A typical polyhedron is described by specifying the dimension n and an integer vector \boldsymbol{h} of primary data, of dimension $O\left(n^{k}\right)$, where $k \geq 1$ is some constant.
- In example, $\boldsymbol{h}=\left(a_{1}, \ldots, a_{n}\right)$ and $k=1$
- U_{0} be the largest entry of \boldsymbol{h}
- Given n and \boldsymbol{h}, P is described as $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$
- \boldsymbol{A} has an arbitrary number of rows
- U largest entry in \boldsymbol{A} and \boldsymbol{b}. We assume

$$
\log U \leq C n^{\ell} \log ^{\ell} U_{0}
$$

5 The separation problem

Given a polyhedron $P \subset \Re^{n}$ and a vector $\boldsymbol{x} \in \Re^{n}$, the separation problem is to:

- Either decide that $\boldsymbol{x} \in P$, or
- Find a vector \boldsymbol{d} such that $\boldsymbol{d}^{\prime} \boldsymbol{x}<\boldsymbol{d}^{\prime} \boldsymbol{y}$ for all $\boldsymbol{y} \in P$

What is the separation problem for

$$
\sum_{i \in S} a_{i} x_{i} \geq|S|, \quad \text { for all subsets } S \text { of }\{1, \ldots, n\} ?
$$

6 Polynomial solvability

6.1 Theorem

If we can solve the separation problem (for a family of polyhedra) in time polynomial in n and $\log U$, then we can also solve linear optimization problems in time polynomial in n and $\log U$. If $\log U \leq C n^{\ell} \log ^{\ell} U_{0}$, then it is also polynomial in $\log U_{0}$

- Proof?
- Converse is also true
- Separation and optimization are polynomially equivalent

6.2 MST

$$
\begin{aligned}
I Z_{M S T}=\min & \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(S)} x_{e} \geq 1 \quad \forall S \subseteq V, S \neq \emptyset, V \\
& \sum_{e \in E} x_{e}=n-1 \\
& x_{e} \in\{0,1\} .
\end{aligned}
$$

How can you solve the LP relaxation?

6.3 TSP

$x_{e}=\left\{\begin{array}{lc}1, & \text { if edge } e \text { is included in the tour. } \\ 0, & \text { otherwise. }\end{array}\right.$

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(S)} x_{e} \geq 2, \quad S \subseteq E \\
& \sum_{e \in \delta(i)} x_{e}=2, \quad i \in V \\
& x_{e} \in\{0,1\}
\end{array}
$$

How can you solve the LP relaxation?

6.4 Probability Theory

- Events A_{1}, A_{2}
- $P\left(A_{1}\right)=0.5, P\left(A_{2}\right)=0.7, P\left(A_{1} \cap A_{2}\right) \leq 0.1$
- Are these beliefs consistent?
- General problem: Given n events $A_{i} i \in N=\{1, \ldots, n\}$, beliefs

$$
\begin{aligned}
\mathrm{P}\left(A_{i}\right) \leq p_{i}, \quad i \in N, \\
\mathrm{P}\left(A_{i} \cap A_{j}\right) \geq p_{i j}, \quad i, j \in N, i<j .
\end{aligned}
$$

- Given the numbers p_{i} and $p_{i j}$, which are between 0 and 1 , are these beliefs consistent?

6.4.1 Formulation

$$
\begin{array}{rlrl}
x(S)=\mathrm{P}\left(\left(\cap_{i \in S} A_{i}\right) \cap\left(\cap_{i \notin S} \bar{A}_{i}\right)\right), \\
\sum_{\{S \mid i \in S\}} x(S) & \leq p_{i}, & i \in N, \\
\sum_{\{S \mid i, j \in S\}} x(S) & \geq p_{i j}, & i, j \in N, i<j, \\
\sum_{S} x(S) & =1, & \\
x(S) & \geq 0, & \forall S .
\end{array}
$$

The previous LP is feasible if and only if there does not exist a vector ($\boldsymbol{u}, \boldsymbol{y}, z$) such that

$$
\begin{aligned}
\sum_{i, j \in S, i<j} y_{i j} & +\sum_{i \in S} u_{i}+z \geq 0, \quad \forall S, \\
\sum_{i, j \in N, i<j} p_{i j} y_{i j} & +\sum_{i \in N} p_{i} u_{i}+z \leq-1, \\
y_{i j} \leq 0, u_{i} \geq 0, & i, j \in N, i<j .
\end{aligned}
$$

Separation problem:

$$
z^{*}+\min _{S} f(S)=\sum_{i, j \in S, i<j} y_{i j}^{*}+\sum_{i \in S} u_{i}^{*} \geq 0 ?
$$

Example: $y_{12}^{*}=-2, y_{13}^{*}=-4, y_{14}^{*}=-4, y_{23}^{*}=-4, y_{24}^{*}=-1, y_{34}^{*}=-7$, $u_{1}^{*}=9, u_{2}^{*}=6, u_{3}^{*}=4, u_{4}^{*}=2$, and $z^{*}=2$

- The minimum cut corresponds to $S_{0}=\{3,4\}$ with value $c\left(S_{0}\right)=21$.
- $f\left(S_{0}\right)=\sum_{i, j \in S_{0}, i<j} y_{i j}^{*}+\sum_{i \in S_{0}} u_{i}^{*}=-7+4+2=-1$
- $f(S)+z^{*} \geq f\left(S_{0}\right)+z^{*}=-1+2=1>0, \quad \forall S$
- Given solution $\left(\boldsymbol{y}^{*}, \boldsymbol{u}^{*}, z^{*}\right)$ is feasible

7 Conclusions

- Ellipsoid algorithm can characterize the complexity of solving LOPs with an exponential number of constraints
- For practical purposes use dual simplex
- Ellipsoid method is an important theoretical development, not a practical one

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

