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Lecture 7: Ideal formulations III
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1 Outline 
Slide 1 

•	 Minimal counterexample 

•	 Lift and project 

2 Matching  polyhedron  
� �	 Slide 2 

Pmatching = x xe = 1, i ∈ V, 
e∈δ({i}) 

xe ≥ 1, S ⊂ V, |S| odd, |S| ≥ 3, 
e∈δ(S) 

0 ≤ xe ≤ 1, e ∈ E . 

•	 F set of perfect matchings in G. 

•	 Theorem: For the perfect matching problem 

Pmatching = conv(F ). 

2.1 Proof Outline 
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•	 conv(F ) ⊂ Pmatching. 

•	 For reverse: Assume G = (V, E) is a graph such that Pmatching �⊂ conv(F ), and 
|V | + |E| is the smallest. 

•	 x be an extreme point of Pmatching not in conv(F ). 

•	 For each edge e = {u, v}, xe > 0, otherwise we could delete e from E. 

•	 xe < 1, otherwise we could replace V by V \ {u, v} and E by all edges in E

incident to V \ {u, v}.


• |E| > |V |; otherwise,  either  G is disconnected (in this case one of the components

of G will be a smaller counterexample), or G has a node of degree one (in this

case the edge e incident to v satisfies xe = 1),  or  G is the disjoint union of cycles

(in this case the theorem holds trivially).


•	 x extreme point of Pmatching, there  are  |E| linearly independent tight constraint. 

•	 There exists a S ⊂ V with |S| odd, |S| ≥ 3, |V \ S| ≥ 3, and 

xe = 1. 
e∈δ(S) 

•	 Contract V \ S to a single new node u, to obtain  G′ = (S ∪ {u}, E′). 

•	 xe 
′ = xe for all e ∈ E(S), and for v ∈ S, 

x{u,v} = x{v,j}. 
{j∈V \S,{v,j}∈E} 

x ′ satisfies constraints with respect to G′ . 
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•	 As G is a smallest counterexample, x ′ belongs to the convex hull of matchings

on G′ ,


′ M� 
x = λM� χ . 

M� 

•	 Contract S to a single new node t we obtain a graph G′′ = ((V \ S) ∪ {t}, E′′)

and a vector x ′′: �
′′ M�� 

x = μM�� χ . 
M�� 

•	 “Glue together” perfect matchings M ′ and M ′′ 

� � λM� μM�� M x =	 χ
xe 

e∈δ(S) M perfect matching: M∩δ(S)={e} 

3 Lift and project 
Slide 4 

•	 S = {x ∈ Zn | Ax ≤ b}. 
•	 (Lift) Multiply Ax ≤ b by xj and 1 − xj 

(Ax)xj ≤ bxj (∗) 

(Ax)(1 − xj ) ≤ b(1 − xj ) 

and substitute yij = xixj for i, j = 1, . . . , n,  i  �= j and xj = xj 
2. Let  Lj (P ) be  

the resulting polyhedron. 

•	 (Project) Project Lj (P ) back to  the  x variables by eliminating variables y.

Let Pj be the resulting polyhedron, i.e., Pj = (Lj (P ))x.


3.1 Theorem 
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Pj = conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}) 

Proof: 

•	 x ′ ∈ P ∩ {x ∈ Rn | xj ∈ {0, 1}} and y ′ = xi
′ xj 

′ .ij 

•	 Since x ′ j = (x ′ j )
2 and Ax′ ≤ b, (x ′ , y ′) ∈ Lj (P ) and thus x ′ ∈ Pj . Hence, 


conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}) ⊆ Pj .


•	 If P ∩ {x ∈ Rn | xj = 0} = ∅, then from the Farkas lemma there exists u ≥ 0,

such that u ′A = −ej and u ′b = −1. Thus, for all x satisfying (*) we have


u ′Ax(1 − xj ) ≤ u ′b(1 − xj ).


Hence, for all x ∈ Pj


−ej 
′ x(1 − xj ) =  −xj (1 − xj ) ≤ −(1 − xj ). 

Replacing xj 
2 by xj , we obtain that xj ≥ 1 is valid for Pj . Since, in addition, 

Pj ⊆ P , we conclude that 

Pj ⊆ P ∩ {x ∈ Rn | xj = 1} = conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}). 
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•	 Similarly, if P ∩ {x ∈ Rn | xj = 1} = ∅, then  

Pj ⊆ conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}). 

•	 Suppose P ∩ {x ∈ Rn | xj = 0} � , P ∩ {x ∈ Rn | xj = 1} = ∅.= ∅	 �
•	 We prove that all valid inequalities for conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}) are 


also valid for Pj .


•	 a ′ x ≤ α a valid inequality for conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}). 
•	 x ∈ P . If  xj = 0, then for all λ ∈ R a ′ x + λxj = a ′ x ≤ α. 

•	 If xj > 0, then there exists λ ≤ 0, such that for all x ∈ P , 

a ′ x + λxj ≤ α. 

•	 Analogously, since a ′ x ≤ α is valid for P ∩{x ∈ Rn | xj = 1}, there  exists  some 

ν ≤ 0 such that for all x ∈ P ,


a ′ x + ν(1 − xj ) ≤ α. 

•	 For all x satisfying (*), 

(1 − xj )(a ′ x + λxj ) ≤ (1 − xj )α 

xj (a ′ x + ν(1 − xj )) ≤ xj α. 

•	 Hence,

a ′ x + (λ + ν)(xj − xj 

2) ≤ α.


•	 After setting x 2 
j = xj we obtain that for all x ∈ Pj , a ′ x ≤ α, thus all valid


inequalities for conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}) are also valid for Pj , and thus

Pj ⊆ conv(P ∩ {x ∈ Rn | xj ∈ {0, 1}}).


3.2 Example 
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P = {(x1, x2)
′ | 2x1 − x2 ≥ 0, 2x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥ 0}. 

2x1
2 − x1x2 ≥ 0 

2x1(1 − x1) − x2(1 − x1) ≥ 0 

2x1
2 + x1x2 ≤ 2x1 

2x1(1 − x1) +  x2(1 − x1) ≤ 2(1 − x1) 

x 21 ≥ 0 

x1(1 − x1) ≥ 0 

x2x1 ≥ 0 

x2(1 − x1) ≥ 0. 
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2 y = x1x2, x1 = x1 

2x1 − y ≥ 0 

−x2 + y ≥ 0 

y ≤ 0 

x2 − y ≤ 2 − 2x1 

x1 ≥ 0 

0 ≥ 0 

y ≥ 0 

x2 − y ≥ 0. 

This implies that y = 0,  
x1	 ≥ 0 

−x2 ≥ 0 

x2 ≤ 2 − 2x1 

x1 ≥ 0 

x2 ≥ 0, 

which leads to 
P1	 = {(x1, x2)

′ | 0 ≤ x1 ≤ 1, x2 = 0} 

= conv(P ∩ {(x1, x2)
′ | x1 ∈ {0, 1}}). 

3.3 Convex hull 
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• Pi1 ,i2,...,it = ((Pi1 )i2 . . .)it . 

• Theorem: The polyhedron Pi1,i2 ,...,it satisfies: 

Pi1 ,...,it = conv(P ∩ {x ∈ Rn | xi ∈ {0, 1}, i ∈ {i1, . . . , it}}). 

• P1,...,n = PI . 
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