15.083J/6.859J Integer Optimization

Lecture 7: Ideal formulations III

1 Outline

- Minimal counterexample
- Lift and project

2 Matching polyhedron

$$
\begin{aligned}
P_{\text {matching }}=\{x \mid & \sum_{e \in \delta(\{i\})} x_{e}=1, i \in V \\
& \sum_{e \in \delta(S)} x_{e} \geq 1, S \subset V,|S| \text { odd, }|S| \geq 3 \\
& \left.0 \leq x_{e} \leq 1, e \in E\right\}
\end{aligned}
$$

- F set of perfect matchings in G.
- Theorem: For the perfect matching problem

$$
P_{\text {matching }}=\operatorname{conv}(F)
$$

2.1 Proof Outline

- $\operatorname{conv}(F) \subset P_{\text {matching }}$.
- For reverse: Assume $G=(V, E)$ is a graph such that $P_{\text {matching }} \not \subset \operatorname{conv}(F)$, and $|V|+|E|$ is the smallest.
- x be an extreme point of $P_{\text {matching }}$ not in $\operatorname{conv}(F)$.
- For each edge $e=\{u, v\}, x_{e}>0$, otherwise we could delete e from E.
- $x_{e}<1$, otherwise we could replace V by $V \backslash\{u, v\}$ and E by all edges in E incident to $V \backslash\{u, v\}$.
- $|E|>|V|$; otherwise, either G is disconnected (in this case one of the components of G will be a smaller counterexample), or G has a node of degree one (in this case the edge e incident to v satisfies $x_{e}=1$), or G is the disjoint union of cycles (in this case the theorem holds trivially).
- x extreme point of $P_{\text {matching }}$, there are $|E|$ linearly independent tight constraint.
- There exists a $S \subset V$ with $|S|$ odd, $|S| \geq 3,|V \backslash S| \geq 3$, and

$$
\sum_{e \in \delta(S)} x_{e}=1
$$

- Contract $V \backslash S$ to a single new node u, to obtain $G^{\prime}=\left(S \cup\{u\}, E^{\prime}\right)$.
- $x_{e}^{\prime}=x_{e}$ for all $e \in E(S)$, and for $v \in S$,

$$
x_{\{u, v\}}^{\prime}=\sum_{\{j \in V \backslash S,\{v, j\} \in E\}} x_{\{v, j\}}
$$

x^{\prime} satisfies constraints with respect to G^{\prime}.

- As G is a smallest counterexample, \boldsymbol{x}^{\prime} belongs to the convex hull of matchings on G^{\prime},

$$
\boldsymbol{x}^{\prime}=\sum_{M^{\prime}} \lambda_{M^{\prime}} \chi^{M^{\prime}} .
$$

- Contract S to a single new node t we obtain a graph $G^{\prime \prime}=\left((V \backslash S) \cup\{t\}, E^{\prime \prime}\right)$ and a vector $\boldsymbol{x}^{\prime \prime}$:

$$
x^{\prime \prime}=\sum_{M^{\prime \prime}} \mu_{M^{\prime \prime}} \chi^{M^{\prime \prime}}
$$

- "Glue together" perfect matchings M^{\prime} and $M^{\prime \prime}$

$$
\boldsymbol{x}=\sum_{e \in \delta(S) M} \sum_{M \text { perfect matching: } M \cap \delta(S)=\{e\}} \frac{\lambda_{M^{\prime}} \mu_{M^{\prime \prime}}}{x_{e}} \chi^{M}
$$

3 Lift and project

- $S=\left\{\boldsymbol{x} \in \mathcal{Z}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$.
- (Lift) Multiply $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ by x_{j} and $1-x_{j}$

$$
\begin{aligned}
(\boldsymbol{A} \boldsymbol{x}) x_{j} & \leq \boldsymbol{b} x_{j} \\
(\boldsymbol{A} \boldsymbol{x})\left(1-x_{j}\right) & \leq \boldsymbol{b}\left(1-x_{j}\right)
\end{aligned}
$$

and substitute $y_{i j}=x_{i} x_{j}$ for $i, j=1, \ldots, n, i \neq j$ and $x_{j}=x_{j}^{2}$. Let $L_{j}(P)$ be the resulting polyhedron.

- (Project) Project $L_{j}(P)$ back to the \boldsymbol{x} variables by eliminating variables \boldsymbol{y}. Let P_{j} be the resulting polyhedron, i.e., $P_{j}=\left(L_{j}(P)\right)_{x}$.

3.1 Theorem

$$
P_{j}=\operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right)
$$

Proof:

- $\boldsymbol{x}^{\prime} \in P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}$ and $y_{i j}^{\prime}=x_{i}^{\prime} x_{j}^{\prime}$.
- Since $x_{j}^{\prime}=\left(x_{j}^{\prime}\right)^{2}$ and $\boldsymbol{A} \boldsymbol{x}^{\prime} \leq \boldsymbol{b},\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right) \in L_{j}(P)$ and thus $\boldsymbol{x}^{\prime} \in P_{j}$. Hence,

$$
\operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right) \subseteq P_{j} .
$$

- If $P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j}=0\right\}=\emptyset$, then from the Farkas lemma there exists $\boldsymbol{u} \geq \mathbf{0}$, such that $\boldsymbol{u}^{\prime} \boldsymbol{A}=-\boldsymbol{e}_{j}$ and $\boldsymbol{u}^{\prime} \boldsymbol{b}=-1$. Thus, for all \boldsymbol{x} satisfying $\left(^{*}\right)$ we have

$$
\boldsymbol{u}^{\prime} \boldsymbol{A} \boldsymbol{x}\left(1-x_{j}\right) \leq \boldsymbol{u}^{\prime} \boldsymbol{b}\left(1-x_{j}\right)
$$

Hence, for all $\boldsymbol{x} \in P_{j}$

$$
-\boldsymbol{e}_{j}^{\prime} \boldsymbol{x}\left(1-x_{j}\right)=-x_{j}\left(1-x_{j}\right) \leq-\left(1-x_{j}\right) .
$$

Replacing x_{j}^{2} by x_{j}, we obtain that $x_{j} \geq 1$ is valid for P_{j}. Since, in addition, $P_{j} \subseteq P$, we conclude that

$$
P_{j} \subseteq P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j}=1\right\}=\operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right)
$$

- Similarly, if $P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j}=1\right\}=\emptyset$, then

$$
P_{j} \subseteq \operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right)
$$

- Suppose $P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j}=0\right\} \neq \emptyset, P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j}=1\right\} \neq \emptyset$.
- We prove that all valid inequalities for $\operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right)$ are also valid for P_{j}.
- $\boldsymbol{a}^{\prime} \boldsymbol{x} \leq \alpha$ a valid inequality for $\operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right)$.
- $\boldsymbol{x} \in P$. If $x_{j}=0$, then for all $\lambda \in \mathcal{R} \boldsymbol{a}^{\prime} \boldsymbol{x}+\lambda x_{j}=\boldsymbol{a}^{\prime} \boldsymbol{x} \leq \alpha$.
- If $x_{j}>0$, then there exists $\lambda \leq 0$, such that for all $\boldsymbol{x} \in P$,

$$
\boldsymbol{a}^{\prime} \boldsymbol{x}+\lambda x_{j} \leq \alpha
$$

- Analogously, since $\boldsymbol{a}^{\prime} \boldsymbol{x} \leq \alpha$ is valid for $P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j}=1\right\}$, there exists some $\nu \leq 0$ such that for all $\boldsymbol{x} \in P$,

$$
\boldsymbol{a}^{\prime} \boldsymbol{x}+\nu\left(1-x_{j}\right) \leq \alpha .
$$

- For all \boldsymbol{x} satisfying $\left(^{*}\right)$,

$$
\begin{aligned}
& \left(1-x_{j}\right)\left(\boldsymbol{a}^{\prime} \boldsymbol{x}+\lambda x_{j}\right) \leq\left(1-x_{j}\right) \alpha \\
& x_{j}\left(\boldsymbol{a}^{\prime} \boldsymbol{x}+\nu\left(1-x_{j}\right)\right) \leq x_{j} \alpha .
\end{aligned}
$$

- Hence,

$$
\boldsymbol{a}^{\prime} \boldsymbol{x}+(\lambda+\nu)\left(x_{j}-x_{j}^{2}\right) \leq \alpha .
$$

- After setting $x_{j}^{2}=x_{j}$ we obtain that for all $\boldsymbol{x} \in P_{j}, \boldsymbol{a}^{\prime} \boldsymbol{x} \leq \alpha$, thus all valid inequalities for $\operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right)$ are also valid for P_{j}, and thus $P_{j} \subseteq \operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{j} \in\{0,1\}\right\}\right)$.

3.2 Example

$P=\left\{\left(x_{1}, x_{2}\right)^{\prime} \mid 2 x_{1}-x_{2} \geq 0,2 x_{1}+x_{2} \leq 2, x_{1} \geq 0, x_{2} \geq 0\right\}$.

$$
\begin{aligned}
2 x_{1}^{2}-x_{1} x_{2} & \geq 0 \\
2 x_{1}\left(1-x_{1}\right)-x_{2}\left(1-x_{1}\right) & \geq 0 \\
2 x_{1}^{2}+x_{1} x_{2} & \leq 2 x_{1} \\
2 x_{1}\left(1-x_{1}\right)+x_{2}\left(1-x_{1}\right) & \leq 2\left(1-x_{1}\right) \\
x_{1}^{2} & \geq 0 \\
x_{1}\left(1-x_{1}\right) & \geq 0 \\
x_{2} x_{1} & \geq 0 \\
x_{2}\left(1-x_{1}\right) & \geq 0 .
\end{aligned}
$$

$$
y=x_{1} x_{2}, x_{1}^{2}=x_{1}
$$

$$
\begin{aligned}
2 x_{1}-y & \geq 0 \\
-x_{2}+y & \geq 0 \\
y & \leq 0 \\
x_{2}-y & \leq 2-2 x_{1} \\
x_{1} & \geq 0 \\
0 & \geq 0 \\
y & \geq 0 \\
x_{2}-y & \geq 0 .
\end{aligned}
$$

This implies that $y=0$,

$$
\begin{aligned}
x_{1} & \geq 0 \\
-x_{2} & \geq 0 \\
x_{2} & \leq 2-2 x_{1} \\
x_{1} & \geq 0 \\
x_{2} & \geq 0,
\end{aligned}
$$

which leads to

$$
\begin{aligned}
P_{1} & =\left\{\left(x_{1}, x_{2}\right)^{\prime} \mid 0 \leq x_{1} \leq 1, x_{2}=0\right\} \\
& =\operatorname{conv}\left(P \cap\left\{\left(x_{1}, x_{2}\right)^{\prime} \mid x_{1} \in\{0,1\}\right\}\right) .
\end{aligned}
$$

3.3 Convex hull

- $P_{i_{1}, i_{2}, \ldots, i_{t}}=\left(\left(P_{i_{1}}\right)_{i_{2}} \ldots\right)_{i_{t}}$.
- Theorem: The polyhedron $P_{i_{1}, i_{2}, \ldots, i_{t}}$ satisfies:

$$
P_{i_{1}, \ldots, i_{t}}=\operatorname{conv}\left(P \cap\left\{\boldsymbol{x} \in \mathcal{R}^{n} \mid x_{i} \in\{0,1\}, i \in\left\{i_{1}, \ldots, i_{t}\right\}\right\}\right) .
$$

- $P_{1, \ldots, n}=P_{I}$.

MIT OpenCourseWare
http://ocw.mit.edu

15.083J / 6.859J Integer Programming and Combinatorial Optimization

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

